Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304504, 2024.
Article in English | MEDLINE | ID: mdl-38870232

ABSTRACT

To determine why SARS-CoV-2 appears to thrive specifically well in meat packaging plants, we used SARS-CoV-2 Delta variant and meat packaging plant drain samples to develop mixed-species biofilms on materials commonly found within meat packaging plants (stainless steel (SS), PVC, and ceramic tile). Our data provides evidence that SARS-CoV-2 Delta variant remained viable on all the surfaces tested with and without an environmental biofilm after the virus was inoculated with the biofilm for 5 days at 7°C. We observed that SARS-CoV-2 Delta variant was able to remain infectious with each of the environmental biofilms by conducting plaque assay and qPCR experiments, however, we detected a significant reduction in viability post-exposure to Plant B biofilm on SS, PVC, and on ceramic tile chips, and to Plant C biofilm on SS and PVC chips. The numbers of viable SARS-CoV-2 Delta viral particles was 1.81-4.57-fold high than the viral inoculum incubated with the Plant B and Plant C environmental biofilm on SS, and PVC chips. We did not detect a significant difference in viability when SARS-CoV-2 Delta variant was incubated with the biofilm obtained from Plant A on any of the materials tested and SARS-CoV-2 Delta variant had higher plaque numbers when inoculated with Plant C biofilm on tile chips, with a 2.75-fold difference compared to SARS-CoV-2 Delta variant on tile chips by itself. In addition, we detected an increase in the biofilm biovolume in response to SARS-CoV-2 Delta variant which is also a concern for food safety due to the potential for foodborne pathogens to respond likewise when they come into contact with the virus. These results indicate a complex virus-environmental biofilm interaction which correlates to the different bacteria found in each biofilm. Our results also indicate that there is the potential for biofilms to protect SARS-CoV-2 from disinfecting agents and remaining prevalent in meat packaging plants.


Subject(s)
Biofilms , Food Packaging , SARS-CoV-2 , Biofilms/growth & development , SARS-CoV-2/physiology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Food Packaging/methods , Humans , COVID-19/microbiology , COVID-19/virology , COVID-19/transmission , Stainless Steel , Meat/microbiology , Meat/virology
2.
Microbiol Spectr ; 10(5): e0186222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36069589

ABSTRACT

In 2020 and 2021, many meat processing plants faced temporary closures due to outbreaks of COVID-19 cases among the workers. There are several factors that could potentially contribute to the increased numbers of COVID-19 cases in meat processing plants: the survival of viable SARS-CoV-2 on meat and meat packaging materials, difficulties in maintaining workplace physical distancing, personal hygiene, and crowded living and transportation conditions. In this study, we used murine hepatitis virus (MHV) as a biosafety level 2 (BSL2) surrogate for SARS-CoV-2 to determine viral survival on the surface of meat, namely, stew-cut beef and ground beef, and commonly used meat packaging materials, such as plastic wrap, meat-absorbent material, and Styrofoam. From our studies, we observed the infectivity of MHV inoculated on ground beef and stew-cut beef for 48 h and saw no significant loss in infectivity for MHV from 0 to 6 h postinoculation (hpi) (unpaired t test). However, beginning at 9 hpi, viral infectivity steadily decreased, resulting in a 1.12-log reduction for ground beef and a 0.46-log reduction for stew-cut beef by 48 hpi. We also observed a significant persistence of MHV on meat packaging materials, with Styrofoam supporting the highest viability (3.25 × 103 ± 9.57 × 102 PFU/mL, a 0.91-log reduction after 48 hpi), followed by meat-absorbent material (75 ± 50 PFU/mL, a 1.10-log reduction after 48 hpi), and lastly, plastic wrap (no detectable PFU after 3 hpi, a 3.12-log reduction). Despite a notable reduction in infectivity, the virus was able to survive and remain infectious for up to 48 h at 7°C on four of the five test surfaces. Our results provide evidence that coronaviruses, such as SARS-CoV-2, could potentially survive on meat, meat-absorbent materials. and Styrofoam for up to 2 days, and potentially longer. IMPORTANCE The meat industry has been faced with astronomical challenges with the rampant spread of COVID-19 among meat processing plant workers. This has resulted in meat processing and packaging plant closures, creating bottlenecks everywhere in the chain, from farms to consumers, subsequently leading to much smaller production outputs and higher prices for all parties involved. This study tested the viability of meat and meat packaging materials as potential reservoirs for SARS-CoV-2, allowing the virus to survive and potentially spread among the workers. We used murine hepatitis virus (MHV) as a biosafety level 2 (BSL2) surrogate for SARS-CoV-2. Our results suggest that ground beef, stew-cut beef, meat-absorbent material, and Styrofoam can harbor coronavirus particles, which can remain viable for at least 48 h. Furthermore, our study provides evidence that the environmental and physical conditions within meat processing facilities can facilitate the survival of viable virus.


Subject(s)
COVID-19 , Murine hepatitis virus , Viruses , Mice , Cattle , Animals , Humans , SARS-CoV-2 , Containment of Biohazards , Polystyrenes , Meat
SELECTION OF CITATIONS
SEARCH DETAIL