Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Mycologia ; : 1-14, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905517

ABSTRACT

Ophiostoma haidanensis is described as a new species of the Ophiostoma piceae complex isolated from yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little) sapwood in the Haida Gwaii island archipelago and the North Coast of British Columbia, Canada. The fungus is characterized by the production of a typical sporothrix-like asexual morph but is distinguished morphologically from other members of the O. piceae species complex by its large, multiseptate primary conidia. Phylogenetic analysis of DNA sequences from the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and the ß-tubulin (BTUB) and translation elongation factor 1-α (TEF1) genes supports the inclusion of O. haidensis as a distinct member within the O. piceae complex. To our knowledge, this is the first report of a blue stain fungus infecting yellow-cedar, an ecologically, culturally, and economically important conifer naturally distributed along the coastal forests of the Pacific Northwest in North America.

2.
New Phytol ; 243(2): 705-719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38803110

ABSTRACT

Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.


Subject(s)
Ascomycota , Disease Resistance , Genome-Wide Association Study , Plant Diseases , Pseudotsuga , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Pseudotsuga/genetics , Pseudotsuga/microbiology , Pseudotsuga/physiology , Ascomycota/physiology , Ascomycota/pathogenicity , Trees/genetics , Adaptation, Physiological/genetics , Multifactorial Inheritance , Gene Expression Regulation, Plant , Genes, Plant
3.
Microbiol Resour Announc ; 13(2): e0100823, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38265221

ABSTRACT

Here, we present the nearly complete genome sequences of the three main genetic lineages of Nothophaeocryptopus gaeumannii, an endophytic ascomycete fungus responsible for Swiss needle cast, a foliar disease that is emerging as a significant threat to the Douglas-fir tree in its natural distribution range.

4.
Methods Mol Biol ; 2659: 37-49, 2023.
Article in English | MEDLINE | ID: mdl-37249883

ABSTRACT

The accurate identification of plant pathogens is a critical step to prevent their spread and attenuate their impact. Among the wide range of methods available, DNA-barcoding, i.e., the identification of an organism through the PCR amplification and sequencing of a single locus, remains one of the most straightforward and accurate plant-pathogen identification techniques that can be used in a generic molecular biology lab. This chapter provides a detailed protocol for the isolation of genomic DNA of fungal and oomycete pathogens from fresh field samples and the amplification and sequencing of the internal transcribed spacer (ITS) locus for DNA-barcoding purpose. Amendments to the protocol are provided to help in resolving issues related to the analysis of complicated samples and to the lack of species resolution that can be encountered with ITS barcodes.


Subject(s)
DNA Barcoding, Taxonomic , Oomycetes , DNA Barcoding, Taxonomic/methods , DNA , Oomycetes/genetics , Sequence Analysis, DNA , Plants/genetics , DNA, Plant/genetics
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220008, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36744569

ABSTRACT

Plant domestication and movement are large contributors to the success of new diseases. The introduction of new host species can result in accelerated evolutionary changes in pathogens, affecting long-established coevolutionary dynamics. This has been observed in poplars where severe epidemics of pathogens that were innocuous in their natural pathosystems occurred following host domestication. The North American fungus Sphaerulina musiva is responsible for endemic leaf spots on Populus deltoides. We show that the expansion of poplar cultivation resulted in the emergence of a new lineage of this pathogen that causes stem infections on a new host, P. balsamifera. This suggests a host shift since this is not a known host. Genome analysis of this emerging lineage reveals a mosaic pattern with islands of diversity separated by fixed genome regions, which is consistent with a homoploid hybridization event between two individuals that produced a hybrid swarm. Genome regions of extreme divergence and low diversity are enriched in genes involved in host-pathogen interactions. The specialization of this emerging lineage to a new host and its clonal propagation represents a serious threat to poplars and could affect both natural and planted forests. This work provides a clear example of the changes created by the intensification of tree cultivation that facilitate the emergence of specialized pathogens, jeopardizing the natural equilibrium between hosts and pathogens. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Subject(s)
Populus , Trees , Humans , Populus/genetics , Forests , Plant Diseases/microbiology
6.
Mol Plant Microbe Interact ; 36(1): 26-46, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36306437

ABSTRACT

Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Phytophthora , Phytophthora/genetics , Phylogeny , Gene Transfer, Horizontal , Genome , Genomics , Plants/genetics
7.
Commun Biol ; 5(1): 477, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589982

ABSTRACT

Invasive exotic pathogens pose a threat to trees and forest ecosystems worldwide, hampering the provision of essential ecosystem services such as carbon sequestration and water purification. Hybridization is a major evolutionary force that can drive the emergence of pathogens. Phytophthora ramorum, an emergent pathogen that causes the sudden oak and larch death, spreads as reproductively isolated divergent clonal lineages. We use a genomic biosurveillance approach by sequencing genomes of P. ramorum from survey and inspection samples and report the discovery of variants of P. ramorum that are the result of hybridization via sexual recombination between North American and European lineages. We show that these hybrids are viable, can infect a host and produce spores for long-term survival and propagation. Genome sequencing revealed genotypic combinations at 54,515 single nucleotide polymorphism loci not present in parental lineages. More than 6,000 of those genotypes are predicted to have a functional impact in genes associated with host infection, including effectors, carbohydrate-active enzymes and proteases. We also observed post-meiotic mitotic recombination that could generate additional genotypic and phenotypic variation and contribute to homoploid hybrid speciation. Our study highlights the importance of plant pathogen biosurveillance to detect variants, including hybrids, and inform management and control.


Subject(s)
Biosurveillance , Phytophthora , Quercus , Ecosystem , Genomics , Plant Diseases , Quercus/genetics
8.
Phytopathology ; 112(8): 1795-1807, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35166574

ABSTRACT

Variation in rate of infection and susceptibility of Pinus spp. to the fungus Cronartium harknessii (syn. Endocronartium harknessii), the causative agent of western gall rust, has been well documented. To test the hypothesis that there is a coevolutionary relationship between C. harknessii and its hosts, we examined genetic structure and virulence of C. harknessii associated with lodgepole pine (P. contorta var. latifolia), jack pine (P. banksiana), and their hybrids. A secondary objective was to improve assessment and diagnosis of infection in hosts. Using 18 microsatellites, we assessed genetic structure of C. harknessii from 90 sites within the ranges of lodgepole pine and jack pine. We identified two lineages (East and West, FST = 0.677) associated with host genetic structure (r = 0.81, P = 0.001), with East comprising three sublineages. In parallel, we conducted a factorial experiment in which lodgepole pine, jack pine, and hybrid seedlings were inoculated with spores from the two primary genetic lineages. With this experiment, we refined the phenotypic categories associated with infection and demonstrated that stem width can be used as a quantitative measure of host response to infection. Overall, each host responded differentially to the fungal lineages, with jack pine exhibiting more resiliency to infection than lodgepole pine and hybrids exhibiting intermediate resiliency. Taken together, the shared genetic structure between fungus and host species, and the differential interaction of the fungal species with the hosts, supports a coevolutionary relationship between host and pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Coleoptera , Pinus , Animals , Coleoptera/microbiology , Coleoptera/physiology , Pinus/microbiology , Plant Diseases/microbiology , Seedlings
9.
Phytopathology ; 111(1): 116-127, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33112215

ABSTRACT

Many current tree improvement programs are incorporating assisted gene flow strategies to match reforestation efforts with future climates. This is the case for the lodgepole pine (Pinus contorta var. latifolia), the most extensively planted tree in western Canada. Knowledge of the structure and origin of pathogen populations associated with this tree would help improve the breeding effort. Recent outbreaks of the Dothistroma needle blight (DNB) pathogen Dothistroma septosporum on lodgepole pine in British Columbia and its discovery in Alberta plantations raised questions about the diversity and population structure of this pathogen in western Canada. Using genotyping-by-sequencing on 119 D. septosporum isolates from 16 natural pine populations and plantations from this area, we identified four genetic lineages, all distinct from the other DNB lineages from outside of North America. Modeling of the population history indicated that these lineages diverged between 31.4 and 7.2 thousand years ago, coinciding with the last glacial maximum and the postglacial recolonization of lodgepole pine in western North America. The lineage found in the Kispiox Valley from British Columbia, where an unprecedented DNB epidemic occurred in the 1990s, was close to demographic equilibrium and displayed a high level of haplotypic diversity. Two lineages found in Alberta and Prince George (British Columbia) showed departure from random mating and contemporary gene flow, likely resulting from pine breeding activities and material exchanges in these areas. The increased movement of planting material could have some major consequences by facilitating secondary contact between genetically isolated DNB lineages, possibly resulting in new epidemics.


Subject(s)
Pinus , Plant Diseases , Ascomycota , British Columbia , Humans , North America , Plant Breeding
10.
Mol Plant Microbe Interact ; 34(4): 397-409, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33258711

ABSTRACT

Many conifers have distributions that span wide ranges in both biotic and abiotic conditions, but the basis of response to biotic stress has received much less attention than response to abiotic stress. In this study, we investigated the gene expression response of lodgepole pine (Pinus contorta) to attack by the fungal pathogen Dothistroma septosporum, which causes Dothistroma needle blight, a disease that has caused severe climate-related outbreaks in northwestern British Columbia. We inoculated tolerant and susceptible pines with two D. septosporum isolates and analyzed the differentially expressed genes (DEGs), differential exon usage, and coexpressed gene modules using RNA-sequencing data. We found a rapid and strong transcriptomic response in tolerant lodgepole pine samples inoculated with one D. septosporum isolate, and a late and weak response in susceptible samples inoculated with another isolate. We mapped 43 of the DEG- or gene module-identified genes to the reference plant-pathogen interaction pathway deposited in the Kyoto Encyclopedia of Genes and Genomes database. These genes are present in PAMP-triggered and effector-triggered immunity pathways. Genes comprising pathways and gene modules had signatures of strong selective constraint, while the highly expressed genes in tolerant samples appear to have been favored by selection to counterattack the pathogen. We identified candidate resistance genes that may respond to D. septosporum effectors. Taken together, our results show that gene expression response to D. septosporum infection in lodgepole pine varies both among tree genotypes and pathogen strains and involves both known candidate genes and a number of genes with previously unknown functions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Pinus , Ascomycota/genetics , Plant Diseases , Transcriptome/genetics
11.
Phytopathology ; 111(1): 49-67, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33200962

ABSTRACT

Anthropocene marks the era when human activity is making a significant impact on earth, its ecological and biogeographical systems. The domestication and intensification of agricultural and forest production systems have had a large impact on plant and tree health. Some pathogens benefitted from these human activities and have evolved and adapted in response to the expansion of crop and forest systems, resulting in global outbreaks. Global pathogen genomics data including population genomics and high-quality reference assemblies are crucial for understanding the evolution and adaptation of pathogens. Crops and forest trees have remarkably different characteristics, such as reproductive time and the level of domestication. They also have different production systems for disease management with more intensive management in crops than forest trees. By comparing and contrasting results from pathogen population genomic studies done on widely different agricultural and forest production systems, we can improve our understanding of pathogen evolution and adaptation to different selection pressures. We find that in spite of these differences, similar processes such as hybridization, host jumps, selection, specialization, and clonal expansion are shaping the pathogen populations in both crops and forest trees. We propose some solutions to reduce these impacts and lower the probability of global pathogen outbreaks so that we can envision better management strategies to sustain global food production as well as ecosystem services.


Subject(s)
Ecosystem , Plant Diseases , Adaptation, Physiological , Crops, Agricultural , Forests
12.
Molecules ; 25(10)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438585

ABSTRACT

We report the first secondary metabolite, 8,8'-bijuglone, obtained from pure cultures of the slow growing Douglas fir- (Pseudotsuga menziesii var. menziesii) foliage-associated fungus Zasmidium pseudotsugae. The quinone was characterized using extensive LC/MS and NMR-based spectroscopic methods. 8,8'-Bijuglone exhibited moderate antibiotic activity against Gram-positive pathogens and weak cytotoxic activity in the NCI-60 cell line panel and in our in-house human colon carcinoma (HCT-116) cell line. An analysis of the fungal genome sequence to assess its metabolic potential was implemented using the bioinformatic tool antiSMASH. In total, 36 putative biosynthetic gene clusters were found with a majority encoding for polyketides (17), followed by non-ribosomal peptides (14), terpenes (2), ribosomal peptides (1), and compounds with mixed biosynthetic origin (2). This study demonstrates that foliage associated fungi of conifers produce antimicrobial metabolites and suggests this guild of fungi may present a rich source of novel molecules.


Subject(s)
Anti-Bacterial Agents/chemistry , Ascomycota/genetics , Biosynthetic Pathways , Naphthoquinones/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Ascomycota/chemistry , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Genome, Fungal/genetics , Gram-Positive Bacteria/drug effects , HCT116 Cells , Humans , Naphthoquinones/isolation & purification , Naphthoquinones/pharmacology , Secondary Metabolism/genetics
13.
PLoS One ; 15(4): e0226863, 2020.
Article in English | MEDLINE | ID: mdl-32240194

ABSTRACT

Global trade and climate change are responsible for a surge in foreign invasive species and emerging pests and pathogens across the world. Early detection and surveillance activities are essential to monitor the environment and prevent or mitigate future ecosystem impacts. Molecular diagnostics by DNA testing has become an integral part of this process. However, for environmental applications, there is a need for cost-effective and efficient point-of-use DNA testing to obtain accurate results from remote sites in real-time. This requires the development of simple and fast sample processing and DNA extraction, room-temperature stable reagents and a portable instrument. We developed a point-of-use real-time Polymerase Chain Reaction system using a crude buffer-based DNA extraction protocol and lyophilized, pre-made, reactions for on-site applications. We demonstrate the use of this approach with pathogens and pests covering a broad spectrum of known undesirable forest enemies: the fungi Sphaerulina musiva, Cronartium ribicola and Cronartium comandrae, the oomycete Phytophthora ramorum and the insect Lymantria dispar. We obtained positive DNA identification from a variety of different tissues, including infected leaves, pathogen spores, or insect legs and antenna. The assays were accurate and yielded no false positive nor negative. The shelf-life of the lyophilized reactions was confirmed after one year at room temperature. Finally, successful tests conducted with portable thermocyclers and disposable instruments demonstrate the suitability of the method, named in Situ Processing and Efficient Environmental Detection (iSPEED), for field testing. This kit fits in a backpack and can be carried to remote locations for accurate and rapid detection of pests and pathogens.


Subject(s)
Environmental Monitoring , Fungi/isolation & purification , Introduced Species , Trees/microbiology , Climate Change , Ecosystem , Forests , Fungi/genetics , Fungi/pathogenicity , Humans , Pest Control/methods , Polymerase Chain Reaction , Trees/genetics , Trees/growth & development
14.
PLoS One ; 15(2): e0221742, 2020.
Article in English | MEDLINE | ID: mdl-32023247

ABSTRACT

Wood and wood products can harbor microorganisms that can raise phytosanitary concerns in countries importing or exporting these products. To evaluate the efficacy of wood treatment on the survival of microorganisms of phytosanitary concern the method of choice is to grow microbes in petri dishes for subsequent identification. However, some plant pathogens are difficult or impossible to grow in axenic cultures. A molecular methodology capable of detecting living fungi and fungus-like organisms in situ can provide a solution. RNA represents the transcription of genes and can become rapidly unstable after cell death, providing a proxy measure of viability. We designed and used RNA-based molecular diagnostic assays targeting genes essential to vital processes and assessed their presence in wood colonized by fungi and oomycetes through reverse transcription and real-time polymerase chain reaction (PCR). A stability analysis was conducted by comparing the ratio of mRNA to gDNA over time following heat treatment of mycelial cultures of the Oomycete Phytophthora ramorum and the fungus Grosmannia clavigera. The real-time PCR results indicated that the DNA remained stable over a period of 10 days post treatment in heat-treated samples, whereas mRNA could not be detected after 24 hours for P. ramorum or 96 hours for G. clavigera. Therefore, this method provides a reliable way to evaluate the viability of these pathogens and offers a potential way to assess the effectiveness of existing and emerging wood treatments. This can have important phytosanitary impacts on assessing both timber and non-timber forest products of commercial value in international wood trade.


Subject(s)
Ophiostomatales/isolation & purification , Phytophthora/isolation & purification , Wood/microbiology , Cell Survival , DNA, Fungal/analysis , Ophiostomatales/cytology , Ophiostomatales/genetics , Phytophthora/cytology , Phytophthora/genetics , Plant Diseases/microbiology , Polymerase Chain Reaction , RNA, Fungal/analysis
15.
mBio ; 10(2)2019 03 12.
Article in English | MEDLINE | ID: mdl-30862749

ABSTRACT

Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR.IMPORTANCE Alien species are often successful invaders in new environments, despite the introduction of a few isolates with a reduced genetic pool. This is called the genetic paradox of invasion. We found two mechanisms by which the invasive forest pathogen causing sudden oak and sudden larch death can evolve. Extensive mitotic recombination producing runs of homozygosity generates genotypic diversity even in the absence of sexual reproduction, and rapid turnover of genes in the non-core, or nonessential portion of genome not shared by all isolates, allows pathogenicity genes to evolve rapidly or be eliminated while retaining essential genes. Mitotic recombination events occur in genomic hot spots, resulting in similar ROH patterns in different isolates or groups; one ROH, independently generated in two different groups, was enriched in pathogenicity genes and may be a target for selection. This provides important insights into the evolution of invasive alien pathogens and their potential for adaptation and future persistence.


Subject(s)
Evolution, Molecular , Genetic Variation , Mitosis , Phytophthora/classification , Phytophthora/genetics , Plant Diseases/microbiology , Recombination, Genetic , Europe , Forests , Genotype , North America , Sequence Analysis, DNA
16.
PLoS One ; 14(2): e0210952, 2019.
Article in English | MEDLINE | ID: mdl-30726264

ABSTRACT

Biosurveillance is a proactive approach that may help to limit the spread of invasive fungal pathogens of trees, such as rust fungi which have caused some of the world's most damaging diseases of pines and poplars. Most of these fungi have a complex life cycle, with up to five spore stages, which is completed on two different hosts. They have a biotrophic lifestyle and may be propagated by asymptomatic plant material, complicating their detection and identification. A bioinformatics approach, based on whole genome comparison, was used to identify genome regions that are unique to the white pine blister rust fungus, Cronartium ribicola, the poplar leaf rust fungi Melampsora medusae and Melampsora larici-populina or to members of either the Cronartium and Melampsora genera. Species- and genus-specific real-time PCR assays, targeting these unique regions, were designed with the aim of detecting each of these five taxonomic groups. In total, twelve assays were developed and tested over a wide range of samples, including different spore types, different infected plant parts on the pycnio-aecial or uredinio-telial host, and captured insect vectors. One hundred percent detection accuracy was achieved for the three targeted species and two genera with either a single assay or a combination of two assays. This proof of concept experiment on pine and poplar leaf rust fungi demonstrates that the genome-enhanced detection and identification approach can be translated into effective real-time PCR assays to monitor tree fungal pathogens.


Subject(s)
Environmental Monitoring/methods , Fungi/isolation & purification , Pinus/microbiology , Plant Diseases/microbiology , Populus/microbiology , Computational Biology , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , Fungi/genetics , Genome, Fungal/genetics , Genomics/methods , Plant Leaves/microbiology , Real-Time Polymerase Chain Reaction , Trees/microbiology
17.
PeerJ ; 6: e4392, 2018.
Article in English | MEDLINE | ID: mdl-29492338

ABSTRACT

Plant diseases caused by fungi and Oomycetes represent worldwide threats to crops and forest ecosystems. Effective prevention and appropriate management of emerging diseases rely on rapid detection and identification of the causal pathogens. The increase in genomic resources makes it possible to generate novel genome-enhanced DNA detection assays that can exploit whole genomes to discover candidate genes for pathogen detection. A pipeline was developed to identify genome regions that discriminate taxa or groups of taxa and can be converted into PCR assays. The modular pipeline is comprised of four components: (1) selection and genome sequencing of phylogenetically related taxa, (2) identification of clusters of orthologous genes, (3) elimination of false positives by filtering, and (4) assay design. This pipeline was applied to some of the most important plant pathogens across three broad taxonomic groups: Phytophthoras (Stramenopiles, Oomycota), Dothideomycetes (Fungi, Ascomycota) and Pucciniales (Fungi, Basidiomycota). Comparison of 73 fungal and Oomycete genomes led the discovery of 5,939 gene clusters that were unique to the targeted taxa and an additional 535 that were common at higher taxonomic levels. Approximately 28% of the 299 tested were converted into qPCR assays that met our set of specificity criteria. This work demonstrates that a genome-wide approach can efficiently identify multiple taxon-specific genome regions that can be converted into highly specific PCR assays. The possibility to easily obtain multiple alternative regions to design highly specific qPCR assays should be of great help in tackling challenging cases for which higher taxon-resolution is needed.

18.
New Phytol ; 215(2): 508-510, 2017 07.
Article in English | MEDLINE | ID: mdl-28631327

Subject(s)
Aesculus , Microbiota , Ecology , Friends , Trees
19.
Mol Ecol ; 26(7): 2077-2091, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28231417

ABSTRACT

Bark beetles form multipartite symbiotic associations with blue stain fungi (Ophiostomatales, Ascomycota). These fungal symbionts play an important role during the beetle's life cycle by providing nutritional supplementation, overcoming tree defences and modifying host tissues to favour brood development. The maintenance of stable multipartite symbioses with seemingly less competitive symbionts in similar habitats is of fundamental interest to ecology and evolution. We tested the hypothesis that the coexistence of three fungal species associated with the mountain pine beetle is the result of niche partitioning and adaptive radiation using SNP genotyping coupled with genotype-environment association analysis and phenotypic characterization of growth rate under different temperatures. We found that genetic variation and population structure within each species is best explained by distinct spatial and environmental variables. We observed both common (temperature seasonality and the host species) and distinct (drought, cold stress, precipitation) environmental and spatial factors that shaped the genomes of these fungi resulting in contrasting outcomes. Phenotypic intraspecific variations in Grosmannia clavigera and Leptographium longiclavatum, together with high heritability, suggest potential for adaptive selection in these species. By contrast, Ophiostoma montium displayed narrower intraspecific variation but greater tolerance to extreme high temperatures. Our study highlights unique phenotypic and genotypic characteristics in these symbionts that are consistent with our hypothesis. By maintaining this multipartite relationship, the bark beetles have a greater likelihood of obtaining the benefits afforded by the fungi and reduce the risk of being left aposymbiotic. Complementarity among species could facilitate colonization of new habitats and survival under adverse conditions.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Coleoptera/microbiology , Ophiostomatales/genetics , Symbiosis , Animals , DNA, Fungal/genetics , Ecosystem , Environment , Gene Frequency , Genetics, Population , Genomics , Phenotype , Polymorphism, Single Nucleotide
20.
Plant Dis ; 101(5): 666-673, 2017 May.
Article in English | MEDLINE | ID: mdl-30678572

ABSTRACT

Phytophthora ramorum is the causal agent of sudden oak death and sudden larch death, and is also responsible for causing ramorum blight on woody ornamental plants. Many microsatellite markers are available to characterize the genetic diversity and population structure of P. ramorum. However, only two markers are polymorphic in the NA2 lineage, which is predominant in Canadian nurseries. Microsatellite motifs were mined from whole-genome sequence data of six P. ramorum NA2 isolates. Of the 43 microsatellite primer pairs selected, 13 loci displayed different allele sizes among the four P. ramorum lineages, 10 loci displayed intralineage variation in the EU1, EU2, and/or NA1 lineages, and 12 microsatellites displayed polymorphism in the NA2 lineage. Genotyping of 272 P. ramorum NA2 isolates collected in nurseries in British Columbia, Canada, from 2004 to 2013 revealed 12 multilocus genotypes (MLGs). One MLG was dominant when examined over time and across sampling locations, and only a few mutations separated the 12 MLGs. The NA2 population observed in Canadian nurseries also showed no signs of sexual recombination, similar to what has been observed in previous studies. The markers developed in this study can be used to assess P. ramorum inter- and intralineage genetic diversity and generate a better understanding of the population structure and migration patterns of this important plant pathogen, especially for the lesser-characterized NA2 lineage.

SELECTION OF CITATIONS
SEARCH DETAIL
...