Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Vet Res Commun ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443588

ABSTRACT

Despite the worldwide occurrence of bartonellae in a broad range of mammal species, in which they usually cause a long-lasting erythrocytic bacteremia, few studies reported Bartonella spp. in avian hosts. The present work aimed to investigate the occurrence and molecular identity of Bartonella spp. infecting birds in the Pantanal wetland, central-western Brazil using a multigene approach. For this purpose, blood samples were collected from 517 individuals from 13 avian orders in the states of Mato Grosso and Mato Groso do Sul. DNA was extracted from avian blood and 500/517 (96.7%) samples were positive in a conventional PCR targeting the avian ß-actin gene. Nineteen (3.8%) out of 500 avian blood samples were positive in a qPCR assay for Bartonella spp. based on the nuoG gene. Among 19 avian blood DNA samples positive in the qPCR for Bartonella spp., 12 were also positive in the qPCR for Bartonella based on the 16S-23S RNA Intergenic region (ITS). In the PCR assays performed for molecular characterization, one 16S rRNA, three ribC, and one nuoG sequences were obtained. Based on BLASTn results, while 1 nuoG, 2 ribC, and 2 ITS sequences showed high identity to Bartonella henselae, one 16S rRNA and 2 ITS showed high similarity to Bartonella machadoae in the sampled birds. Bartonella spp. related to B. henselae and B. machadoae were detected, for the first time, in wild birds from the Brazilian Pantanal.

2.
Microb Ecol ; 86(4): 2838-2846, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37608162

ABSTRACT

Establishing how environmental gradients and host ecology drive spatial variation in infection rates and diversity of pathogenic organisms is one of the central goals in disease ecology. Here, we identified the predictors of concomitant infection and lineage richness of blood parasites in New Word bird communities. Our multi-level Bayesian models revealed that higher latitudes and elevations played a determinant role in increasing the probability of a bird being co-infected with Leucocytozoon and other haemosporidian parasites. The heterogeneity in both single and co-infection rates was similarly driven by host attributes and temperature, with higher probabilities of infection in heavier migratory host species and at cooler localities. Latitude, elevation, host body mass, migratory behavior, and climate were also predictors of Leucocytozoon lineage richness across the New World avian communities, with decreasing parasite richness at higher elevations, rainy and warmer localities, and in heavier and resident host species. Increased parasite richness was found farther from the equator, confirming a reverse Latitudinal Diversity Gradient pattern for this parasite group. The increased rates of Leucocytozoon co-infection and lineage richness with increased latitude are in opposition with the pervasive assumption that pathogen infection rates and diversity are higher in tropical host communities.


Subject(s)
Bird Diseases , Coinfection , Haemosporida , Parasites , Animals , Coinfection/veterinary , Bayes Theorem , Altitude , Bird Diseases/epidemiology , Bird Diseases/parasitology , Birds , Prevalence
3.
Parasitol Res ; 122(9): 2065-2077, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37391644

ABSTRACT

The Brazilian Amazon supports an extremely diverse avifauna and serves as the diversification center for avian malaria parasites in South America. Construction of hydroelectric dams can drive biodiversity loss by creating islands incapable of sustaining the bird communities found in intact forest sites. Besides anthropogenic actions, the presence of parasites can also influence the dynamics and structure of bird communities. Avian malaria (Plasmodium) and related haemosporidian parasites (Haemoproteus and Leucocytozoon) are a globally distributed group of protozoan parasites recovered from all major bird groups. However, no study to date has analyzed the presence of avian haemosporidian parasites in fragmented areas such as land bridge islands formed during artificial flooding following the construction of hydroelectric dams. The aim of this study is to assess the prevalence and molecular diversity of haemosporidians in bird communities inhabiting artificial islands in the area of the Balbina Hydroelectric Dam. The reservoir area covers 443,700 ha with 3546 islands on the left bank of the Uatumã River known to contain more than 400 bird species. We surveyed haemosporidian infections in blood samples collected from 445 understory birds, belonging to 53 species, 24 families, and 8 orders. Passeriformes represented 95.5% of all analyzed samples. We found a low overall Plasmodium prevalence (2.9%), with 13 positive samples (two Plasmodium elongatum and 11 Plasmodium sp.) belonging to eight lineages. Six of these lineages were previously recorded in the Amazon, whereas two of them are new. Hypocnemis cantator, the Guianan Warbling Antbird, represented 38.5% of all infected individuals, even though it represents only 5.6% of the sampled individuals. Since comparison with Plasmodium prevalence data prior to construction of Balbina is not possible, other studies in artificially flooded areas are imperative to test if anthropogenic flooding may disrupt vector-parasite relationships leading to low Plasmodium prevalence.


Subject(s)
Bird Diseases , Haemosporida , Malaria, Avian , Parasites , Passeriformes , Plasmodium , Humans , Animals , Parasites/genetics , Malaria, Avian/parasitology , Islands , Brazil/epidemiology , Prevalence , Bird Diseases/epidemiology , Bird Diseases/parasitology , Plasmodium/genetics , Haemosporida/genetics , Genetic Variation
4.
Microorganisms ; 11(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37375033

ABSTRACT

Plasmodium spp. and some other blood parasites belonging to the order Haemosporida are the focus of many epidemiological studies worldwide. However, haemosporidian parasites from wild animals are largely neglected in scientific research. For example, Polychromophilus parasites, which are exclusive to bats, are described in Europe, Asia, Africa, and Oceania, but little is known about their presence and genetic diversity in the New World. In this study, 224 samples of bats from remaining fragments of the Atlantic Forest and Pantanal biomes, as well as urbanized areas in southern and southeastern Brazil, were analyzed for the presence of haemosporidian parasites by PCR of the mitochondrial gene that encodes cytochrome b (cytb). The PCR fragments of the positive samples were sequenced and analyzed by the Bayesian inference method to reconstruct the phylogenetic relationships between Polychromophilus parasites from bats in Brazil and other countries. Sequences from Brazilian lineages of Polychromophilus were recovered in a clade with sequences from Polychromophilus murinus and close to the one Polychromophilus sequence obtained in Panama, the only available sequence for the American continent. This clade was restricted to bats of the family Vespertilionidae and distinct from Polychromophilus melanipherus, a parasite species mainly found in bats of the family Miniopteridae. The detection of Polychromophilus and the genetic proximity to P. murinus were further confirmed with the amplification of two other genes (clpc and asl). We also found a Haemosporida parasite sequence in a sample of Noctilio albiventris collected in the Pantanal biome, which presents phylogenetic proximity with avian Haemoproteus sequences. Morphological and molecular studies are still needed to conclude and describe the Polychromophilus species in Brazilian Myotis bats in more detail and to confirm Haemoproteus parasites in bats. Nevertheless, these molecular results in Brazilian bats confirm the importance of studying these neglected genera.

5.
Mol Phylogenet Evol ; 186: 107828, 2023 09.
Article in English | MEDLINE | ID: mdl-37247702

ABSTRACT

Amazonia is the primary source of haemosporidian diversity for South American biomes. Yet, our understanding of the contribution of each area of endemism and the biogeographical processes that generated such diversity in this group of vector transmitted parasites remains incomplete. For example, a recently formed fluvial island in the Amazon delta - Marajó Island, is composed of avian lineages from adjacent Amazonian areas of endemism, but also from open habitats, such as Cerrado. This raises the question: Is the parasite assemblage found in avian hosts on this island formed by parasite lineages from adjacent Amazonian areas of endemism or Cerrado? Here, we assessed the spatiotemporal evolution of Plasmodium and Parahaemoproteus parasites. Our biogeographic analysis showed that dispersal dominated Plasmodium diversification, whereas duplication was more frequent for the genus Parahaemoproteus. We show that the Inambari area of endemism was the primary source for Plasmodium diversity on Marajó Island, but that this island received more Parahaemoproteus lineages from Cerrado than any Amazonian area of endemism. The unique patterns of dispersal for each parasite genus coupled with their propensity to shift hosts locally may have facilitated their diversification across Amazonia, suggesting that differences in deep evolutionary history may have constrained their colonization of Marajó Island.


Subject(s)
Haemosporida , Parasites , Plasmodium , Animals , Phylogeny , Plasmodium/genetics , Haemosporida/genetics , Birds
6.
Ticks Tick Borne Dis ; 14(2): 102121, 2023 03.
Article in English | MEDLINE | ID: mdl-36682198

ABSTRACT

Immature hard ticks from the genus Amblyomma feed on blood from a wide range of Neotropical avian hosts. They serve as vectors for pathogens of medical and veterinary importance, such as Rickettsia agents of the spotted fever group (SFG). Hence, determining ecological factors that increase encounter rates between immature ticks and their avian hosts may contribute to the understanding of tick-borne diseases transmission. Here, we used 720 individual birds from 96 species surveyed in the Brazilian Pantanal to test whether host breeding season influenced tick infestation probabilities. Additionally, collected ticks were screened for Rickettsia agents to describe new avian-tick-bacteria associations. Our models revealed that the probability of an individual bird being infested with immature ticks was similar during the breeding and pre-breeding season, but higher loads of immature tick stages were found during the breeding season. Host sex did not predict infestation probability, but Rickettsia agents recovered from ticks were more prevalent during the pre-breeding season. The new records of host usage by larvae and nymphs of Amblyomma in Pantanal and the growing body of tick surveys in Neotropical avian communities, suggest that immature ticks may benefit from avian blood sources during their annual cycle. The low number of infected ticks with Rickettsia agents on Pantanal birds suggest that this vertebrate group are likely not acting as reservoirs for these microorganisms. However, long-term surveys at the same site are imperative to determine which tick species are acting as reservoirs for Rickettsia agents in Pantanal and determine whether birds are playing a role in dispersing ticks and tick-borne pathogens.


Subject(s)
Bird Diseases , Ixodidae , Rickettsia , Tick Infestations , Ticks , Animals , Ixodidae/microbiology , Bird Diseases/epidemiology , Bird Diseases/microbiology , Birds , Tick Infestations/epidemiology , Tick Infestations/veterinary , Tick Infestations/microbiology , Amblyomma
7.
Acta Parasitol ; 68(1): 159-171, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36456776

ABSTRACT

PURPOSE: The Diplostomidae is a globally distributed family of digeneans that parasitize a wide variety of tetrapod definitive hosts. Recent molecular phylogenetic studies have revealed unknown diplostomid diversity in avian hosts throughout the New World. Herein, we provide descriptions of a novel genus of diplostomids with two new species. METHODS: Two species of diplostomids belonging to the new genus were collected from anhinga birds in Mississippi (USA) and Brazil. Partial nuclear 28S ribosomal and mitochondrial cox1 genes were sequenced. Ribosomal data were used for phylogenetic inference. RESULTS: Both species of Anhingatrema n. gen. were positioned in a 100% supported, monophyletic clade in the phylogenetic tree. The molecular phylogenetic position and a combination of morphological features (e.g., presence of pseudosuckers, testes shape and orientation) supported erection of the new genus. Anhingatrema overstreeti n. sp. and Anhingatrema cararai n. sp. are morphologically similar, but differ in size of and ratios associated with pseudosuckers. The two species differ by 2% of 28S sequences and 13.8% of cox1 sequences. Comparison of DNA sequences revealed that Diplostomidae gen. sp. in GenBank (MZ314151) is conspecific with An. overstreeti n. sp. CONCLUSION: Anhingatrema n. gen. is the sixth genus of diplostomids known from anhingas worldwide. Anhingatrema cararai n. sp. is the first diplostomid to be reported from anhingas in South America. Combined with previous studies, the molecular phylogenies revealed at least two host switches to anhingas from other birds during the evolutionary history of the Diplostomidae.


Subject(s)
Trematoda , Animals , Phylogeny , Genes, Mitochondrial , Birds , Brazil
8.
Proc Biol Sci ; 289(1987): 20221283, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36416043

ABSTRACT

Birds are highly visually oriented and use plumage coloration as an important signalling trait in social communication. Hence, males and females may have different patterns of plumage coloration, a phenomenon known as sexual dichromatism. Because males tend to have more complex plumages, sexual dichromatism is usually attributed to female choice. However, plumage coloration is partly condition-dependent; therefore, other selective pressures affecting individuals' success may also drive the evolution of this trait. Here, we used tanagers as model organisms to study the relationships between dichromatism and plumage coloration complexity in tanagers with parasitism by haemosporidians, investment in reproduction and life-history traits. We screened blood samples from 2849 individual birds belonging to 52 tanager species to detect haemosporidian parasites. We used publicly available data for plumage coloration, bird phylogeny and life-history traits to run phylogenetic generalized least-square models of plumage dichromatism and complexity in male and female tanagers. We found that plumage dichromatism was more pronounced in bird species with a higher prevalence of haemosporidian parasites. Lastly, high plumage coloration complexity in female tanagers was associated with a longer incubation period. Our results indicate an association between haemosporidian parasites and plumage coloration suggesting that parasites impact mechanisms of sexual selection, increasing differences between the sexes, and social (non-sexual) selection, driving females to develop more complex coloration.


Subject(s)
Parasites , Passeriformes , Humans , Animals , Male , Female , Phylogeny , Pigmentation , Sex Characteristics
9.
Parasitology ; : 1-10, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36226920

ABSTRACT

Vector-borne parasites are important ecological drivers influencing life-history evolution in birds by increasing host mortality or susceptibility to new diseases. Therefore, understanding why vulnerability to infection varies within a host clade is a crucial task for conservation biology and for understanding macroecological life-history patterns. Here, we studied the relationship of avian life-history traits and climate on the prevalence of Plasmodium and Parahaemoproteus parasites. We sampled 3569 individual birds belonging to 53 species of the family Thraupidae. Individuals were captured from 2007 to 2018 at 92 locations. We created 2 phylogenetic generalized least-squares models with Plasmodium and Parahaemoproteus prevalence as our response variables, and with the following predictor variables: climate PC1, climate PC2, body size, mixed-species flock participation, incubation period, migration, nest height, foraging height, forest cover, and diet. We found that Parahaemoproteus and Plasmodium prevalence was higher in species inhabiting open habitats. Tanager species with longer incubation periods had higher Parahaemoproteus prevalence as well, and we hypothesize that these longer incubation periods overlap with maximum vector abundances, resulting in a higher probability of infection among adult hosts during their incubation period and among chicks. Lastly, we found that Plasmodium prevalence was higher in species without migratory behaviour, with mixed-species flock participation, and with an omnivorous or animal-derived diet. We discuss the consequences of higher infection prevalence in relation to life-history traits in tanagers.

10.
Parasitology ; 149(13): 1760-1768, 2022 11.
Article in English | MEDLINE | ID: mdl-36165282

ABSTRACT

Migratory birds are implicated in dispersing haemosporidian parasites over great geographic distances. However, their role in sharing these vector-transmitted blood parasites with resident avian host species along their migration flyway is not well understood. We studied avian haemosporidian parasites in 10 localities where Chilean Elaenia, a long-distance Neotropical austral migrant species, spends part of its annual cycle to determine local parasite transmission among resident sympatric host species in the elaenia's distributional range across South America. We sampled 371 Chilean Elaenias and 1,818 birds representing 243 additional sympatric species from Brazilian wintering grounds to Argentinian breeding grounds. The 23 haemosporidian lineages found in Chilean Elaenias exhibited considerable variation in distribution, specialization, and turnover across the 10 avian communities in South America. Parasite lineage dissimilarity increased with geographic distance, and infection probability by Parahaemoproteus decreased in localities harbouring a more diverse haemosporidian fauna. Furthermore, blood smears from migrating Chilean Elaenias and local resident avian host species did not contain infective stages of Leucocytozoon, suggesting that transmission did not take place in the Brazilian stopover site. Our analyses confirm that this Neotropical austral migrant connects avian host communities and transports haemosporidian parasites along its distributional range in South America. However, the lack of transmissive stages at stopover site and the infrequent parasite lineage sharing between migratory host populations and residents at breeding and wintering grounds suggest that Chilean Elaenias do not play a significant role in dispersing haemosporidian parasites, nor do they influence local transmission across South America.


Subject(s)
Bird Diseases , Haemosporida , Parasites , Passeriformes , Plasmodium , Animals , Prevalence , Chile/epidemiology , Bird Diseases/epidemiology , Bird Diseases/parasitology , Haemosporida/genetics , Phylogeny
11.
Parasitology ; : 1-8, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35393002

ABSTRACT

Parasites display various degrees of host specificity, reflecting different coevolutionary histories with their hosts. Avian hosts follow multiple migration patterns representing short but also long distances. As parasites infecting migratory birds are subjected to multiple environmental and biotic changes through their flyways, migration may disrupt or strengthen cophylogenetic congruence between hosts and parasites. On the one hand, parasites might adapt to a single migratory host, evolving to cope with the specific challenges associated with the multiple habitats occupied by the host. On the other, as migrants can introduce parasites into new habitats, higher rates of host switching could also disrupt cophylogenetic patterns. We analysed whether migratory behaviour shapes avian haemosporidian parasite­host cophylogenetic congruence by testing if contributions of host­parasite links to overall congruence differ among resident and short-, variable- and long-distance migrants globally and within South America only. On both scales, we found significant overall cophylogenetic congruence by testing whether overall congruence differed between haemosporidian lineages and bird species. However, we found no difference in contribution towards congruence among links involving resident vs migratory hosts in both models. Thus, migratory behaviour neither weakens nor strengthens bird­haemosporidian cophylogenetic congruence, suggesting that other avian host traits are more influential in generating phylogenetic congruence in this host­parasite system.

12.
Parasitol Res ; 121(5): 1407-1417, 2022 May.
Article in English | MEDLINE | ID: mdl-35106653

ABSTRACT

Avian haemosporidians from the genera Plasmodium and Haemoproteus are vector transmitted parasites. A growing body of evidence suggests that variation in their prevalence within avian communities is correlated with a variety of avian ecological traits. Here, we examine the relationship between infection probability and diversity of haemosporidian lineages and avian host ecological traits (average body mass, foraging stratum, migratory behavior, and nest type). We used molecular methods to detect haemosporidian parasites in blood samples from 642 individual birds of 149 species surveyed at four localities in the Brazilian Pantanal. Based on cytochrome b sequences, we recovered 28 lineages of Plasmodium and 17 of Haemoproteus from 31 infected avian species. Variation in lineage diversity among bird species was not explained by avian ecological traits. Prevalence was heterogenous across avian hosts. Bird species that forage near the ground were less likely to be infected by Haemoproteus, whereas birds that build open cup nests were more likely infected by Haemoproteus. Furthermore, birds foraging in multiple strata were more likely to be infected by Plasmodium. Two other ecological traits, often related to host resistance (body mass and migratory behavior), did not predict infection probability among birds sampled in the Pantanal. Our results suggest that avian host traits are less important determinants of haemosporidian diversity in Pantanal than in other regions, but reinforces that host attributes, related to vector exposure, are to some extent important in modulating infection probability within an avian host assemblage.


Subject(s)
Bird Diseases , Haemosporida , Parasites , Plasmodium , Protozoan Infections, Animal , Animals , Bird Diseases/epidemiology , Bird Diseases/parasitology , Birds/parasitology , Phylogeny , Plasmodium/genetics , Prevalence , Protozoan Infections, Animal/epidemiology
13.
Parasitology ; 149(4): 542-554, 2022 04.
Article in English | MEDLINE | ID: mdl-35042575

ABSTRACT

Fibricola and Neodiplostomum are diplostomid genera with very similar morphology that are currently separated based on their definitive hosts. Fibricola spp. are normally found in mammals, while Neodiplostomum spp. typically parasitize birds. Previously, no DNA sequence data was available for any member of Fibricola. We generated nuclear ribosomal and mtDNA sequences of Fibricola cratera (type-species), Fibricola lucidum and 6 species of Neodiplostomum. DNA sequences were used to examine phylogenetic interrelationships among Fibricola and Neodiplostomum and re-evaluate their systematics. Molecular phylogenies and morphological study suggest that Fibricola should be considered a junior synonym of Neodiplostomum. Therefore, we synonymize the two genera and transfer all members of Fibricola into Neodiplostomum. Specimens morphologically identified as Neodiplostomum cratera belonged to 3 distinct phylogenetic clades based on mitochondrial data. One of those clades also included sequences of specimens identified morphologically as Neodiplostomum lucidum. Further study is necessary to resolve the situation regarding the morphology of N. cratera. Our results demonstrated that some DNA sequences of N. americanum available in GenBank originate from misidentified Neodiplostomum banghami. Molecular phylogentic data revealed at least 2 independent host-switching events between avian and mammalian hosts in the evolutionary history of Neodiplostomum; however, the directionality of these host-switching events remains unclear.


Subject(s)
Platyhelminths , Trematoda , Animals , Birds , DNA, Mitochondrial/genetics , Mammals , Phylogeny , Platyhelminths/genetics
14.
Int J Parasitol ; 52(1): 47-63, 2022 01.
Article in English | MEDLINE | ID: mdl-34371018

ABSTRACT

The Diplostomidae Poirier, 1886 is a large, globally distributed family of digeneans parasitic in intestines of their definitive hosts. Diplostomum and Tylodelphys spp. are broadly distributed, commonly reported, and the most often sequenced diplostomid genera. The majority of published DNA sequences from these genera originated from larval stages only, which typically cannot be identified to the species level based on morphology alone. We generated partial large ribosomal subunit (28S) rRNA and cytochrome c oxidase subunit 1 (cox1) mtDNA gene sequences from 14 species/species-level lineages of Diplostomum, six species/species-level lineages of Tylodelphys, two species/species-level lineages of Austrodiplostomum, one species previously assigned to Paralaria, two species/species-level lineages of Dolichorchis and one unknown diplostomid. Our DNA sequences of 11 species/species-level lineages of Diplostomum (all identified to species), four species/species-level lineages of Tylodelphys (all identified to species), Austrodiplostomum compactum, Paralaria alarioides and Dolichorchis lacombeensis originated from adult specimens. 28S sequences were used for phylogenetic inference to demonstrate the position of Paralaria alarioides and Dolichorchis spp. within the Diplostomoidea and study the interrelationships of Diplostomum, Tylodelphys and Austrodiplostomum. Our results demonstrate that two diplostomids from the North American river otter (P. alarioides and a likely undescribed taxon) belong within Diplostomum. Further, our results demonstrate the non-monophyly of Tylodelphys due to the position of Austrodiplostomum spp., based on our phylogenetic analyses and morphology. Furthermore, the results of phylogenetic analysis of 28S confirmed the status of Dolichorchis as a separate genus. The phylogenies suggest multiple definitive host-switching events (birds to otters and among major avian groups) and a New World origin of Diplostomum and Tylodelphys spp. Our DNA sequences from adult digeneans revealed identities of 10 previously published lineages of Diplostomum and Tylodelphys, which were previously identified to genus only. The novel DNA data from this work provide opportunities for future comparisons of larval diplostomines collected in ecological studies.


Subject(s)
Trematoda , Animals , Birds , DNA, Mitochondrial/genetics , Larva , Phylogeny , Species Specificity
15.
Oecologia ; 197(2): 501-509, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34482439

ABSTRACT

Migration can modify interaction dynamics between parasites and their hosts with migrant hosts able to disperse parasites and impact local community transmission. Thus, studying the relationships among migratory hosts and their parasites is fundamental to elucidate how migration shapes host-parasite interactions. Avian haemosporidians are some of the most prevalent and diverse group of wildlife parasites and are also widely studied as models in ecological and evolutionary research. Here, we contrast partner fidelity, network centrality and parasite taxonomic composition among resident and non-resident avian hosts using presence/absence data on haemosporidians parasitic in South American birds as study model. We ran multilevel Bayesian models to assess the role of migration in determining partner fidelity (i.e., normalized degree) and centrality (i.e., weighted closeness) in host-parasite networks of avian hosts and their respective haemosporidian parasites. In addition, to evaluate parasite taxonomic composition, we performed permutational multivariate analyses of variance to quantify dissimilarity in haemosporidian lineages infecting different host migratory categories. We observed similar partner fidelity and parasite taxonomic composition among resident and migratory hosts. Conversely, we demonstrate that migratory hosts play a more central role in host-parasite networks than residents. However, when evaluating partially and fully migratory hosts separately, we observed that only partially migratory species presented higher network centrality when compared to resident birds. Therefore, migration does not lead to differences in both partner fidelity and parasite taxonomic composition. However, migratory behavior is positively associated with network centrality, indicating migratory hosts play more important roles in shaping host-parasite interactions and influence local transmission.


Subject(s)
Bird Diseases , Haemosporida , Parasites , Animals , Bayes Theorem , Birds , Host-Parasite Interactions , Phylogeny
16.
J Parasitol ; 107(3): 455-462, 2021 05 01.
Article in English | MEDLINE | ID: mdl-34086924

ABSTRACT

As presently recognized, Herpetodiplostomum is a small genus of proterodiplostomid digeneans parasitic in crocodilians. Most members of Cheloniodiplostomum, a genus of proterodiplostomids that parasitize chelonians, were originally placed within Herpetodiplostomum. The 2 genera were distinguished based on the presence/absence of papillae on the holdfast organ and anterior extent of vitellarium. Our study of Herpetodiplostomum and Cheloniodiplostomum revealed a lack of consistent morphological differences between the genera. Therefore, we consider Cheloniodiplostomum to be a junior synonym of Herpetodiplostomum. Recent molecular phylogenetic studies included a number of proterodiplostomid taxa; however, DNA sequence data are not available for any Herpetodiplostomum or Cheloniodiplostomum species. Herein, we describe a new Herpetodiplostomum species from Geoffroy's side-necked turtle Phrynops geoffroanus from Mato Grosso State, Brazil. The new species can be distinguished from other Herpetodiplostomum species based on the distribution of vitellarium, level of development of holdfast papillae, and ratio of prosoma:opisthosoma width, among other characters. We provide the first molecular phylogeny of the Proterodiplostomidae that includes a Herpetodiplostomum species. The limited geographic distribution of Herpetodiplostomum spp. within the geographic ranges of caimans suggests a secondary host switching event from crocodilians to chelonian definitive hosts in the evolution of Herpetodiplostomum.


Subject(s)
Trematoda/classification , Trematode Infections/veterinary , Turtles/parasitology , Animals , Bayes Theorem , Brazil/epidemiology , Phylogeny , Trematoda/genetics , Trematoda/isolation & purification , Trematode Infections/epidemiology , Trematode Infections/parasitology
17.
Int J Parasitol ; 51(10): 877-882, 2021 09.
Article in English | MEDLINE | ID: mdl-33848498

ABSTRACT

Individuals of migratory species may be more likely to become infected by parasites because they cross different regions along their route, thereby being exposed to a wider range of parasites during their annual cycle. Conversely, migration may have a protective effect since migratory behaviour allows hosts to escape environments presenting a high risk of infection. Haemosporidians are one of the best studied, most prevalent and diverse groups of avian parasites, however the impact of avian host migration on infection by these parasites remains controversial. We tested whether migratory behaviour influenced the prevalence and richness of avian haemosporidian parasites among South American birds. We used a dataset comprising ~ 11,000 bird blood samples representing 260 bird species from 63 localities and Bayesian multi-level models to test the impact of migratory behaviour on prevalence and lineage richness of two avian haemosporidian genera (Plasmodium and Haemoproteus). We found that fully migratory species present higher parasite prevalence and higher richness of haemosporidian lineages. However, we found no difference between migratory and non-migratory species when evaluating prevalence separately for Plasmodium and Haemoproteus, or for the richness of Plasmodium lineages. Nevertheless, our results indicate that migratory behaviour is associated with an infection cost, namely a higher prevalence and greater variety of haemosporidian parasites.


Subject(s)
Bird Diseases , Haemosporida , Parasites , Plasmodium , Protozoan Infections, Animal , Animals , Bayes Theorem , Bird Diseases/epidemiology , Birds , Haemosporida/genetics , Humans , Phylogeny , Prevalence , Protozoan Infections, Animal/epidemiology
18.
Int J Parasitol ; 51(9): 719-728, 2021 08.
Article in English | MEDLINE | ID: mdl-33722680

ABSTRACT

Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.


Subject(s)
Bird Diseases , Haemosporida , Malaria, Avian , Parasites , Plasmodium , Animals , Bird Diseases/epidemiology , Forests , Haemosporida/genetics , Humans , Malaria, Avian/epidemiology , Phylogeny , Plasmodium/genetics , Prevalence
19.
Pathogens ; 10(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494428

ABSTRACT

Determining the prevalence and local transmission dynamics of parasitic organisms are necessary to understand the ability of parasites to persist in host populations and disperse across regions, yet local transmission dynamics, diversity, and distribution of haemosporidian parasites remain poorly understood. We studied the prevalence, diversity, and distributions of avian haemosporidian parasites of the genera Plasmodium, Haemoproteus, and Leucocytozoon among resident and migratory birds in Serra do Mar, Brazil. Using 399 blood samples from 66 Atlantic Forest bird species, we determined the prevalence and molecular diversity of these pathogens across avian host species and described a new species of Haemoproteus. Our molecular and morphological study also revealed that migratory species were infected more than residents. However, vector infective stages (gametocytes) of Leucocytozoon spp., the most prevalent parasites found in the most abundant migrating host species in Serra do Mar (Elaenia albiceps), were not seen in blood films of local birds suggesting that this long-distance Austral migrant can disperse Leucocytozoon parasite lineages from Patagonia to the Atlantic Forest, but lineage sharing among resident species and local transmission cannot occur in this part of Brazil. Our study demonstrates that migratory species may harbor a higher diversity and prevalence of parasites than resident species, but transportation of some parasites by migratory hosts may not always affect local transmission.

20.
Parasitol Res ; 120(2): 605-613, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33415388

ABSTRACT

Studies contrasting parasite prevalence and host-parasite community structure between pristine and disturbed environments will improve our understanding of how deforestation affects disease transmission and parasite extinction. To determine how infection rates of a common and diverse group of avian blood parasites (Plasmodium and Haemoproteus) respond to changes in avian host composition after mining, we surveyed 25 bird communities from pristine forests (two forest types: plateau and hillside) and reforested sites in Northeast Amazonia. Infection rates and both parasite and avian host community structure exhibited considerable variation across the deforestation gradient. In opposition to the emerging pattern of lower avian haemosporidian prevalence in disturbed tropical forests in Africa, we show that secondary forests had higher haemosporidian prevalence in one of the largest mining areas of Amazonia. The dissimilarity displayed by bird communities may explain, in part, the higher prevalence of Haemoproteus in reforested areas owing to the tolerance of some bird species to open-canopy forest habitat. On the other hand, deforestation may cause local extinction of Plasmodium parasites due to the loss of their avian hosts that depend on closed-canopy primary forest habitats. Our results demonstrate that forest loss induced by anthropogenic changes can affect a host-parasite system and disturb both parasite transmission and diversity.


Subject(s)
Apicomplexa/isolation & purification , Bird Diseases/epidemiology , Host-Parasite Interactions , Animals , Apicomplexa/genetics , Biodiversity , Bird Diseases/parasitology , Bird Diseases/transmission , Birds , Brazil/epidemiology , DNA Barcoding, Taxonomic/veterinary , Ecosystem , Forests , Geography , Haemosporida/genetics , Haemosporida/isolation & purification , Mining , Plasmodium/genetics , Plasmodium/isolation & purification , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...