Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673729

ABSTRACT

Here, we continued the investigation of anti-HSV-1 activity and neuroprotective potential of 14 polyphenolic compounds isolated from Maackia amurensis heartwood. We determined the absolute configurations of asymmetric centers in scirpusin A (13) and maackiazin (10) as 7R,8R and 1″S,2″S, respectively. We showed that dimeric stilbens maackin (9) and scirpusin A (13) possessed the highest anti-HSV-1 activity among polyphenols 1-14. We also studied the effect of polyphenols 9 and 13 on the early stages of HSV-1 infection. Direct interaction with the virus (virucidal activity) was the main mechanism of the antiviral activity of these compounds. The neuroprotective potential of polyphenolic compounds from M. amurensis was studied using models of 6-hydroxydopamine (6-OHDA)-and paraquat (PQ)-induced neurotoxicity. A dimeric stilbene scirpusin A (13) and a flavonoid liquiritigenin (6) were shown to be the most active compounds among the tested polyphenols. These compounds significantly increased the viability of 6-OHDA-and PQ-treated Neuro-2a cells, elevated mitochondrial membrane potential and reduced the intracellular ROS level. We also found that scirpusin A (13), liquiritigenin (6) and retusin (3) considerably increased the percentage of live Neuro-2a cells and decreased the number of early apoptotic cells. Scirpusin A (13) was the most promising compound possessing both anti-HSV-1 activity and neuroprotective potential.


Subject(s)
Antiviral Agents , Herpes Simplex , Herpesvirus 1, Human , Neurons , Neuroprotective Agents , Oxidative Stress , Polyphenols , Polyphenols/pharmacology , Polyphenols/chemistry , Oxidative Stress/drug effects , Herpesvirus 1, Human/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Neurons/drug effects , Neurons/metabolism , Animals , Herpes Simplex/drug therapy , Mice , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Cell Survival/drug effects
2.
Biomolecules ; 14(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38397388

ABSTRACT

Three new bibenzochromenones named phanogracilins A-C (1-3) were isolated from the crinoid Phanogenia gracilis. The structure of 1 was established using X-ray crystallography as 5,5',6,6',8,8'-hexahydroxy-2,2'-dipropyl-4H,4'H-[7,9'-bibenzo[g]chromene]-4,4'-dione. This allowed us to assign reliably 2D NMR signals for compound 1 and subsequently for its isomer 2 that differed in the connecting position of two benzochromenone moieties (7,10' instead of 7,9'), and compound for 3 that differed in the length of the aliphatic chain of one of the fragments. Compound 4 was derived from 1 in alkaline conditions, and its structure was elucidated as 5,5',6',8,8'-pentahydroxy-2,2'-dipropyl-4H,4'H-[7,9'-bibenzo[g]chromene]-4,4',6,9-tetraone. Even though compounds 1-4 did not contain stereo centers, they possessed notable optical activity due to sterical hindrances, which limited the internal rotation of two benzochromenone fragments around C(7)-C(9'/10') bonds. Isolated bibenzochromenones 1-4 were tested for their antiradical, neuroprotective and antimicrobial activities. Compounds 1, 3 and 4 demonstrated significant antiradical properties towards ABTS radicals higher than the positive control trolox. Compounds 1 and 4 exhibited moderate neuroprotective activity, increasing the viability of rotenone-treated Neuro-2a cells at a concentration of 1 µM by 9.8% and 11.8%, respectively. Compounds 1 and 3 at concentrations from 25 to 100 µM dose-dependently inhibited the growth of Gram-positive bacteria S. aureus and yeast-like fungi C. albicans, and they also prevented the formation of their biofilms. Compounds 2 and 4 exhibited low antimicrobial activity.


Subject(s)
Anti-Infective Agents , Staphylococcus aureus , Animals , Echinodermata , Anti-Infective Agents/pharmacology , Benzopyrans/chemistry , Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL