Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Lett ; 47(5): 1271-1274, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230349

ABSTRACT

We experimentally demonstrate that 2D Airy wave packets can produce intense curved two-color filaments that emit terahertz (THz) radiation with unique characteristics. Due to the curvature of the plasma channel, THz waves, emitted from different longitudinal regions of the plasma, propagate in different directions resulting in non-concentric THz cones in the far-field. These cones have different cone angles and polarization which we attribute to the way the two-color 2D Airy driving fields are produced in the nonlinear crystal and then propagate to form the curved plasma filament.

2.
Light Sci Appl ; 9(1): 186, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33298833

ABSTRACT

Strong terahertz (THz) electric and magnetic transients open up new horizons in science and applications. We review the most promising way of achieving sub-cycle THz pulses with extreme field strengths. During the nonlinear propagation of two-color mid-infrared and far-infrared ultrashort laser pulses, long, and thick plasma strings are produced, where strong photocurrents result in intense THz transients. The corresponding THz electric and magnetic field strengths can potentially reach the gigavolt per centimeter and kilotesla levels, respectively. The intensities of these THz fields enable extreme nonlinear optics and relativistic physics. We offer a comprehensive review, starting from the microscopic physical processes of light-matter interactions with mid-infrared and far-infrared ultrashort laser pulses, the theoretical and numerical advances in the nonlinear propagation of these laser fields, and the most important experimental demonstrations to date.

3.
Opt Lett ; 45(24): 6835-6838, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33325908

ABSTRACT

We experimentally demonstrate that the terahertz (THz) emission from two-color laser filaments in gases is strongly affected by the pulse repetition rate of the driving laser. We show that at repetition rates above 100 Hz, propagation of every next laser pulse in the pulse train is altered by gas density depressions produced by the preceding laser pulses. As a result, plasma channels at higher repetition rates become shorter, leading to less efficient THz generation. In particular, we observe a 50% decrease in the emitted THz energy when the repetition rate increases from 6 Hz to 6 kHz.

4.
Nat Commun ; 11(1): 292, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31941895

ABSTRACT

Extreme nonlinear interactions of THz electromagnetic fields with matter are the next frontier in nonlinear optics. However, reaching this frontier in free space is limited by the existing lack of appropriate powerful THz sources. Here, we experimentally demonstrate that two-color filamentation of femtosecond mid-infrared laser pulses at 3.9 µm allows one to generate ultrashort sub-cycle THz pulses with sub-milijoule energy and THz conversion efficiency of 2.36%, resulting in THz field amplitudes above 100 MV cm-1. Our numerical simulations predict that the observed THz yield can be significantly upscaled by further optimizing the experimental setup. Finally, in order to demonstrate the strength of our THz source, we show that the generated THz pulses are powerful enough to induce nonlinear cross-phase modulation in electro-optic crystals. Our work paves the way toward free space extreme nonlinear THz optics using affordable table-top laser systems.

5.
Opt Lett ; 44(9): 2165-2168, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31042174

ABSTRACT

At first glance, the amount of water molecules naturally contained in humid air is negligibly small to affect filamentation of ultrashort laser pulses. However, here we show, both experimentally and numerically, that for ultraviolet laser pulses with 248 nm wavelength this is not true. We demonstrate that with increase of air humidity the plasma channels generated by the ultraviolet laser pulses in air become longer and wider, while the corresponding electron density in humid air can be up to one order of magnitude higher compared to dry air.

6.
Opt Lett ; 43(5): 1063-1066, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489781

ABSTRACT

We demonstrate that paraxial ring-Airy beams can approach the wavelength limit, while observing a counterintuitive, strong enhancement of their focal peak intensity. Using numerical simulations, we show that this behavior is a result of the coherent constructive action of paraxial and nonparaxial energy flow. A simple theoretical model enables us to predict the parameter range over which this is possible.


Subject(s)
Models, Theoretical , Refractometry/methods , Scattering, Radiation , Computer Simulation , Light , Physical Phenomena
7.
Opt Express ; 26(24): 31150-31159, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30650705

ABSTRACT

We theoretically study the generation of terahertz (THz) radiation by two-color filamentation of ultrashort laser pulses with different wavelengths. We consider wavelengths in the range from 0.6 to 10.6 µm, thus covering the whole range of existing and future powerful laser sources in the near, mid and far-infrared. We show how different parameters of two-color filaments and generated THz pulses depend on the laser wavelength. We demonstrate that there is an optimal laser wavelength for two-color filamentation that provides the highest THz conversion efficiency and results in generation of extremely intense single cycle THz fields.

8.
Phys Rev Lett ; 119(22): 223901, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29286781

ABSTRACT

We demonstrate both theoretically and experimentally that the harmonics from abruptly autofocusing ring-Airy beams present a surprising property: They preserve the phase distribution of the fundamental beam. Consequently, this "phase memory" imparts to the harmonics the abrupt autofocusing behavior, while, under certain conditions, their foci coincide in space with the one of the fundamental. Experiments agree well with our theoretical estimates and detailed numerical calculations. Our findings open the way for the use of such beams and their harmonics in strong field science.

9.
Nat Commun ; 8(1): 1184, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29084961

ABSTRACT

Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm-1, which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.

10.
Nat Commun ; 8(1): 773, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974678

ABSTRACT

An important challenge in the field of three-dimensional ultrafast laser processing is to achieve permanent modifications in the bulk of silicon and narrow-gap materials. Recent attempts by increasing the energy of infrared ultrashort pulses have simply failed. Here, we establish that it is because focusing with a maximum numerical aperture of about 1.5 with conventional schemes does not allow overcoming strong nonlinear and plasma effects in the pre-focal region. We circumvent this limitation by exploiting solid-immersion focusing, in analogy to techniques applied in advanced microscopy and lithography. By creating the conditions for an interaction with an extreme numerical aperture near 3 in a perfect spherical sample, repeatable femtosecond optical breakdown and controllable refractive index modifications are achieved inside silicon. This opens the door to the direct writing of three-dimensional monolithic devices for silicon photonics. It also provides perspectives for new strong-field physics and warm-dense-matter plasma experiments.Ultrafast laser processing is a versatile three-dimensional photonic structuring method but it has been limited to wide band gap materials like glasses. Here, Chanal et al. demonstrate direct refractive-index modification in the bulk of silicon by extreme localization of the energy deposition.

11.
Opt Lett ; 41(20): 4656-4659, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-28005860

ABSTRACT

We show the existence of a family of waves that share a common interesting property affecting the way these waves propagate and focus. The waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related, respectively, to the converging and diverging parts of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens. Analytic formulas for the intensity distribution after focusing are derived, while numerical and experimental demonstrations are given for some of the most interesting members of this family, the accelerating Airy and ring-Airy beams.

12.
Opt Express ; 21(23): 27789-95, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514294

ABSTRACT

We use the theory of inhomogeneous waves to study the transmission of light in µ-near-zero metamaterials. We find the effect of all-angle collimation of incident light, which means that the vector of energy flow in a wave transmitted to a µ-near-zero metamaterial is perpendicular to the interface for any incident angles if an incident wave is s-polarized. This effect is similar to the all-angle collimation of incident light recently found through a different theoretical framework in ε-near-zero metamaterials for a p-polarized incident wave [S. Feng, Phys. Rev. Lett. 108, 193904 (2012)]. To provide a specific example, we consider the transmission of light in a negative-index metamaterial in the spectral region with a permeability resonance, and show that all-angle collimation indeed takes place at the wavelength for which the real part of permeability is vanishingly small.

13.
Phys Rev Lett ; 107(14): 143903, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-22107196

ABSTRACT

We theoretically study the propagation of a femtosecond laser pulse in negative-index metamaterials, and show that its propagation velocity can be easily controlled at a certain wavelength range simply by changing the initial chirp. This phenomenon may be used as an extremely simple way to control the propagation velocity of a femtosecond laser pulse.

SELECTION OF CITATIONS
SEARCH DETAIL
...