Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(10): 5850-5863, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35580046

ABSTRACT

DDX58 encodes RIG-I, a cytosolic RNA sensor that ensures immune surveillance of nonself RNAs. Individuals with RIG-IE510V and RIG-IQ517H mutations have increased susceptibility to Singleton-Merten syndrome (SMS) defects, resulting in tissue-specific (mild) and classic (severe) phenotypes. The coupling between RNA recognition and conformational changes is central to RIG-I RNA proofreading, but the molecular determinants leading to dissociated disease phenotypes remain unknown. Herein, we employed hydrogen/deuterium exchange mass spectrometry (HDX-MS) and single molecule magnetic tweezers (MT) to precisely examine how subtle conformational changes in the helicase insertion domain (HEL2i) promote impaired ATPase and erroneous RNA proofreading activities. We showed that the mutations cause a loosened latch-gate engagement in apo RIG-I, which in turn gradually dampens its self RNA (Cap2 moiety:m7G cap and N1-2-2'-O-methylation RNA) proofreading ability, leading to increased immunopathy. These results reveal HEL2i as a unique checkpoint directing two specialized functions, i.e. stabilizing the CARD2-HEL2i interface and gating the helicase from incoming self RNAs; thus, these findings add new insights into the role of HEL2i in the control of antiviral innate immunity and autoimmunity diseases.


Subject(s)
Autoimmune Diseases , Odontodysplasia , Autoimmune Diseases/genetics , DEAD Box Protein 58/chemistry , DEAD Box Protein 58/genetics , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , Humans , Immunity, Innate/genetics , Metacarpus , RNA/chemistry
3.
Cell Res ; 31(10): 1047-1060, 2021 10.
Article in English | MEDLINE | ID: mdl-34465913

ABSTRACT

The outbreak of SARS-CoV-2 (SARS2) has caused a global COVID-19 pandemic. The spike protein of SARS2 (SARS2-S) recognizes host receptors, including ACE2, to initiate viral entry in a complex biomechanical environment. Here, we reveal that tensile force, generated by bending of the host cell membrane, strengthens spike recognition of ACE2 and accelerates the detachment of spike's S1 subunit from the S2 subunit to rapidly prime the viral fusion machinery. Mechanistically, such mechano-activation is fulfilled by force-induced opening and rotation of spike's receptor-binding domain to prolong the bond lifetime of spike/ACE2 binding, up to 4 times longer than that of SARS-S binding with ACE2 under 10 pN force application, and subsequently by force-accelerated S1/S2 detachment which is up to ~103 times faster than that in the no-force condition. Interestingly, the SARS2-S D614G mutant, a more infectious variant, shows 3-time stronger force-dependent ACE2 binding and 35-time faster force-induced S1/S2 detachment. We also reveal that an anti-S1/S2 non-RBD-blocking antibody that was derived from convalescent COVID-19 patients with potent neutralizing capability can reduce S1/S2 detachment by 3 × 106 times under force. Our study sheds light on the mechano-chemistry of spike activation and on developing a non-RBD-blocking but S1/S2-locking therapeutic strategy to prevent SARS2 invasion.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Tensile Strength , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Humans , Hydrogen-Ion Concentration , Immunization, Passive , Molecular Dynamics Simulation , Protein Binding , Protein Domains/immunology , Protein Subunits/chemistry , Protein Subunits/immunology , Protein Subunits/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization , COVID-19 Serotherapy
4.
Mol Cell ; 73(5): 1015-1027.e7, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30711376

ABSTRACT

TCRs recognize cognate pMHCs to initiate T cell signaling and adaptive immunity. Mechanical force strengthens TCR-pMHC interactions to elicit agonist-specific catch bonds to trigger TCR signaling, but the underlying dynamic structural mechanism is unclear. We combined steered molecular dynamics (SMD) simulation, single-molecule biophysical approaches, and functional assays to collectively demonstrate that mechanical force induces conformational changes in pMHCs to enhance pre-existing contacts and activates new interactions at the TCR-pMHC binding interface to resist bond dissociation under force, resulting in TCR-pMHC catch bonds and T cell activation. Intriguingly, cancer-associated somatic mutations in HLA-A2 that may restrict these conformational changes suppressed TCR-pMHC catch bonds. Structural analysis also indicated that HLA polymorphism might alter the equilibrium of these conformational changes. Our findings not only reveal critical roles of force-induced conformational changes in pMHCs for activating TCR-pMHC catch bonds but also have implications for T cell-based immunotherapy.


Subject(s)
Adaptive Immunity , HLA-A2 Antigen/immunology , Mechanotransduction, Cellular , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , HEK293 Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , HLA-A2 Antigen/metabolism , Humans , Hybridomas , Mice, Inbred C57BL , Mice, Transgenic , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Single Molecule Imaging/methods , Structure-Activity Relationship , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...