Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Reprod Biol Endocrinol ; 19(1): 120, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344365

ABSTRACT

BACKGROUND: This study aimed to detect the effect of angiotensin receptor 1 (AT1) knock out (KO) on spermatogenesis and hypothalamic-pituitary-gonadal (HPG) axis hormone expression. METHODS: Normal C57BL/6 male mice were used as control group or treated with angiotensin receptor blocker, in addition heterozygous ± AT1KO mice were generated. After caged at a ratio of 2 to 1 with females, pregnancy rates of female mice were determined by detection of vaginal plugs. Deformity rate of spermatozoa was evaluated by eosin staining and morphology evaluation. The AT1 mRNA expression in the testes of male ± AT1KO mice was detected by quantitative real-time polymerase chain reaction (QRT-PCR). Serum GnRH level was determined by ELISA. RESULTS: Compared to control, ± AT1KO mice showed reduced expression of AT1 in testes, pituitary and hypothalamus. In addition, decreased level of GnRH, but not follicle stimulating hormone (FSH) or luteinizing hormone (LH), in ± AT1KO mice was detected. Treatment with angiotensin receptor blocker (ARB) did not have significant effects on HPG hormones. ± AT1KO mice exhibited male infertility and significant abnormality of sperm morphology. CONCLUSION: Reduced AT1 knockout resulted in male infertility, potentially by inducing abnormal spermatogenesis. Both testis and HPG axis signaling may be involved.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Infertility, Male/genetics , Receptor, Angiotensin, Type 1/genetics , Spermatogenesis/genetics , Testis/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Gonadotropin-Releasing Hormone/drug effects , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Infertility, Male/metabolism , Losartan/pharmacology , Male , Mice , Mice, Knockout , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Receptor, Angiotensin, Type 1/metabolism , Spermatogenesis/drug effects , Testis/drug effects
3.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073203

ABSTRACT

Recently, anticancer peptides (ACPs) have emerged as unique and promising therapeutic agents for cancer treatment compared with antibody and small molecule drugs. In addition to experimental methods of ACPs discovery, it is also necessary to develop accurate machine learning models for ACP prediction. In this study, features were extracted from the three-dimensional (3D) structure of peptides to develop the model, compared to most of the previous computational models, which are based on sequence information. In order to develop ACPs with more potency, more selectivity and less toxicity, the model for predicting ACPs, hemolytic peptides and toxic peptides were established by peptides 3D structure separately. Multiple datasets were collected according to whether the peptide sequence was chemically modified. After feature extraction and screening, diverse algorithms were used to build the model. Twelve models with excellent performance (Acc > 90%) in the ACPs mixed datasets were used to form a hybrid model to predict the candidate ACPs, and then the optimal model of hemolytic peptides (Acc = 73.68%) and toxic peptides (Acc = 85.5%) was used for safety prediction. Novel ACPs were found by using those models, and five peptides were randomly selected to determine their anticancer activity and toxic side effects in vitro experiments.


Subject(s)
Antineoplastic Agents , Databases, Protein , Machine Learning , Neoplasms/drug therapy , Peptides , A549 Cells , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , HeLa Cells , Hemolysis/drug effects , Humans , MCF-7 Cells , Neoplasms/metabolism , Neoplasms/pathology , Peptides/chemistry , Peptides/genetics , Peptides/pharmacology , Sheep
4.
Am J Cancer Res ; 10(8): 2387-2408, 2020.
Article in English | MEDLINE | ID: mdl-32905508

ABSTRACT

The humanized Delta-like 4 (DLL4) monoclonal antibody H3L2 with a quite high affinity for hrDLL4 inhibits the DLL4-mediated human umbilical vein endothelial cell (HUVEC) phenotype, inducing dysfunctional angiogenesis and tumour cell apoptosis, which effectively arrests breast cancer cell growth in vivo. To develop a more effective therapy, an engineered cysteine residue at alanine 121 (Kabat numbering) on each H3L2 heavy chain or at valine 207 (Kabat numbering) on each H3L2 light chain was established by site-directed mutagenesis. Three engineered antibodies, THL4, TH2 and TL2, were identified, and the specific-site antibody-drug conjugates (ADCs) THL4-mpeoDM1 (named HLmD4), TH2-mpeoDM1 (named HmD2), TL2-mpeoDM1 (named LmD2) and THL4-vcMMAE (named HLvM4), were produced, which exhibit much more potent antitumour activity than the naked antibody. The engineered ADCs can be directed against DLL4 and effectively internalized, followed by the release of small molecule cytotoxic agents, e.g., DM1 or MMAE, into the cytosol, which inhibit the synthesis of microtubules and induce G2/M phase growth arrest and cell death through the induction of apoptosis. ADC-conjugated DM1 was highly potent against DLL4-expressing cells in vitro. We systematically compared the in vitro potency and the in vivo preclinical efficacy and safety profiles of the heterogeneous conventional ADC, H3L2-mpeoDM1 (named JmD4) with that of the homogeneous engineered conjugate HLmD4. The engineered anti-DLL4 ADCs, particularly HLmD4, showed more potent antitumour activity than Docetaxel and superior safety compared with JmD4 in two xenograft tumour models. Our findings indicate that engineered ADCs have promising potential as effective preclinical therapies for cancers.

SELECTION OF CITATIONS
SEARCH DETAIL