Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
JHEP Rep ; 5(4): 100664, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36908748

ABSTRACT

Background & Aims: Patterns of liver HBV antigen expression have been described but not quantified at single-cell resolution. We applied quantitative techniques to liver biopsies from individuals with chronic hepatitis B and evaluated sampling heterogeneity, effects of disease stage, and nucleos(t)ide (NUC) treatment, and correlations between liver and peripheral viral biomarkers. Methods: Hepatocytes positive for HBV core and HBsAg were quantified using a novel four-plex immunofluorescence assay and image analysis. Biopsies were analysed from HBeAg-positive (n = 39) and HBeAg-negative (n = 75) participants before and after NUC treatment. To evaluate sampling effects, duplicate biopsies collected at the same time point were compared. Serum or plasma samples were evaluated for levels of HBV DNA, HBsAg, hepatitis B core-related antigen (HBcrAg), and HBV RNA. Results: Diffusely distributed individual HBV core+ cells and foci of HBsAg+ cells were the most common staining patterns. Hepatocytes positive for both HBV core and HBsAg were rare. Paired biopsies revealed large local variation in HBV staining within participants, which was confirmed in a large liver resection. NUC treatment was associated with a >100-fold lower median frequency of HBV core+ cells in HBeAg-positive and HBeAg-negative participants, whereas reductions in HBsAg+ cells were not statistically significant. The frequency of HBV core+ hepatocytes was lower in HBeAg-negative participants than in HBeAg-positive participants at all time points evaluated. Total HBV+ hepatocyte burden correlated with HBcrAg, HBV DNA, and HBV RNA only in baseline HBeAg-positive samples. Conclusions: Reductions in HBV core+ hepatocytes were associated with HBeAg-negative status and NUC treatment. Variation in HBV positivity within individual livers was extensive. Correlations between the liver and the periphery were found only between biomarkers likely indicative of cccDNA (HBV core+ and HBcrAg, HBV DNA, and RNA). Impact and Implications: HBV infects liver hepatocyte cells, and its genome can exist in two forms that express different sets of viral proteins: a circular genome called cccDNA that can express all viral proteins, including the HBV core and HBsAg proteins, or a linear fragment that inserts into the host genome typically to express HBsAg, but not HBV core. We used new techniques to determine the percentage of hepatocytes expressing the HBV core and HBsAg proteins in a large set of liver biopsies. We find that abundance and patterns of expression differ across patient groups and even within a single liver and that NUC treatment greatly reduces the number of core-expressing hepatocytes.

2.
Antimicrob Agents Chemother ; 67(1): e0134822, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36519892

ABSTRACT

The standard of care for the treatment of chronic hepatitis B (CHB) is typically lifelong treatment with nucleos(t)ide analogs (NAs), which suppress viral replication and provide long-term clinical benefits. However, infectious virus can still be detected in patients who are virally suppressed on NA therapy, which may contribute to the failure of these agents to cure most CHB patients. Accordingly, new antiviral treatment options are being developed to enhance the suppression of hepatitis B virus (HBV) replication in combination with NAs ("antiviral intensification"). Here, we describe GS-SBA-1, a capsid assembly modulator (CAM) belonging to class CAM-E, that demonstrates potent inhibition of extracellular HBV DNA in vitro (EC50 [50% effective concentration] = 19 nM) in HBV-infected primary human hepatocytes (PHHs) as well as in vivo in an HBV-infected immunodeficient mouse model. GS-SBA-1 has comparable activities across HBV genotypes and nucleos(t)ide-resistant mutants in HBV-infected PHHs. In addition, GS-SBA-1 demonstrated in vitro additivity in combination with tenofovir alafenamide (TAF). The administration of GS-SBA-1 to PHHs at the time of infection prevents covalently closed circular DNA (cccDNA) formation and, hence, decreases HBV RNA and antigen levels (EC50 = 80 to 200 nM). Furthermore, GS-SBA-1 prevents the production of extracellular HBV RNA-containing viral particles in vitro. Collectively, these data demonstrate that GS-SBA-1 is a potent CAM that has the potential to enhance viral suppression in combination with an NA.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Animals , Mice , Humans , Hepatitis B, Chronic/drug therapy , Capsid , Hepatitis B virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Capsid Proteins/genetics , RNA , DNA, Viral/genetics , DNA, Circular , Hepatitis B/drug therapy
3.
Aliment Pharmacol Ther ; 57(5): 509-523, 2023 03.
Article in English | MEDLINE | ID: mdl-36427857

ABSTRACT

BACKGROUNDS AND AIMS: We investigated associations between hepatitis B virus (HBV) genome-length haplotype number (HN) at baseline in subjects with HBeAg-positive chronic hepatitis B (CHB), and the likelihood of achieving functional cure during direct-acting antiviral therapy METHOD: We analysed 86 HBeAg-positive baseline samples from patients with HBV genotypes A and D who were enrolled in a Phase II trial of tenofovir disoproxil fumarate (TDF) to determine if HN was a biomarker of HBsAg loss during therapy. Findings were validated using baseline samples from 181 patients with HBV genotypes A and D from an independent clinical trial utilising TDF or tenofovir alafenamide therapy in HBeAg-positive CHB. RESULTS: In the HBeAg-positive test cohort, patients with genotypes A or D and ≤2 haplotypes had a minimum of 21-fold higher likelihood of achieving HBsAg loss on TDF. Baseline HN (p < 0.0001) was a stronger predictor of HBsAg loss on therapy than HBsAg titre (p = 0.03), HBeAg titre (p = 0.0002), or the presence of HBV basal core promoter (A1762T, p = 0.0379 and G1764A, p = 0.0176) or G1896A precore mutations (p = 0.0218). This finding was validated in the independent validation cohort. HN was statistically higher in patients with HBV genotypes B or C infection compared to genotypes A and D. CONCLUSION: Baseline HN ≤2 predicts which patients with HBV genotypes A or D will more likely progress to functional cure on current direct-acting antiviral therapy, with greater accuracy than current biomarkers including baseline HBsAg and HBeAg titre.


Subject(s)
Hepatitis B, Chronic , Hepatitis C, Chronic , Humans , Hepatitis B virus/genetics , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/genetics , Hepatitis B e Antigens/genetics , Hepatitis B Surface Antigens/genetics , Antiviral Agents/therapeutic use , Haplotypes , Hepatitis C, Chronic/drug therapy , Tenofovir/therapeutic use , Genotype , DNA, Viral/genetics , DNA, Viral/analysis
4.
PLoS One ; 17(12): e0271145, 2022.
Article in English | MEDLINE | ID: mdl-36477212

ABSTRACT

Chronic hepatitis B (CHB) is a global health care challenge and a major cause of liver disease. To find new therapeutic avenues with a potential to functionally cure chronic Hepatitis B virus (HBV) infection, we performed a focused screen of epigenetic modifiers to identify potential inhibitors of replication or gene expression. From this work we identified isonicotinic acid inhibitors of the histone lysine demethylase 5 (KDM5) with potent anti-HBV activity. To enhance the cellular permeability and liver accumulation of the most potent KDM5 inhibitor identified (GS-080) an ester prodrug was developed (GS-5801) that resulted in improved bioavailability and liver exposure as well as an increased H3K4me3:H3 ratio on chromatin. GS-5801 treatment of HBV-infected primary human hepatocytes reduced the levels of HBV RNA, DNA and antigen. Evaluation of GS-5801 antiviral activity in a humanized mouse model of HBV infection, however, did not result in antiviral efficacy, despite achieving pharmacodynamic levels of H3K4me3:H3 predicted to be efficacious from the in vitro model. Here we discuss potential reasons for the disconnect between in vitro and in vivo efficacy, which highlight the translational difficulties of epigenetic targets for viral diseases.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Humans , Animals , Mice , Antiviral Agents/pharmacology , Hepatitis B, Chronic/drug therapy , Epigenomics
5.
J Virol ; 96(18): e0084922, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36037476

ABSTRACT

The existing cell culture-based methods to study hepatitis B virus (HBV) have limitations and do not allow for viral long-term passage. The aim of this study was to develop a robust in vitro long-term viral passage system with optimized cell culture conditions and a viral isolate with the ability to spread and passage. An HBV genotype A clinical isolate was subjected to multiple rounds of UV treatment and passaged in an optimized primary human hepatocyte (PHH)/human fibroblast coculture system. The passaged UV-treated virus was sequenced and further characterized. In addition, a panel of mutant viruses containing different combinations of mutations observed in this virus was investigated. The clinical isolate was passaged for 20 rounds with 21 days per round in an optimized PHH/human fibroblast coculture system while subject to UV mutagenesis. This passaged UV-mutated isolate harbored four mutations: G225A (sR24K) in the S gene, A2062T in the core gene, and two mutations G1764A and C1766T (xV131I) in the basal core promoter (BCP) region. In vitro characterization of the four mutations suggested that the two BCP mutations G1764A and C1766T contributed to the increased viral replication and viral infectivity. A robust in vitro long-term HBV viral passage system has been established by passaging a UV-treated clinical isolate in an optimized PHH/fibroblast coculture system. The two BCP mutations played a key role in the virus's ability to passage. This passage system can be used for studying the entire life cycle of HBV and has the potential for in vitro drug-resistance selection upon further optimization. IMPORTANCE The existing cell culture-based methods to study HBV have limitations and do not allow for viral long-term passage. In this study, an HBV genotype A clinical isolate was subjected to multiple rounds of UV treatment and passaged in an optimized PHH/human fibroblast coculture system. This passaged UV-mutated isolate carried four mutations across the HBV genome, and in vitro characterization of the four mutations suggested that the two basal core promoter (BCP) mutations G1764A and C1766T played a key role in the virus's ability to passage. In summary, we have developed a robust in vitro long-term HBV viral passage system by passaging an UV-treated HBV genotype A clinical isolate in an optimized PHH/human fibroblast coculture system. This passage system can be used for studying the entire life cycle of HBV and has the potential for in vitro drug-resistance selection upon further optimization.


Subject(s)
Coculture Techniques , Hepatitis B virus , Hepatitis B , Virology , DNA, Viral/genetics , Fibroblasts/virology , Genotype , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatocytes/virology , Humans , Mutagenesis , Mutation , Virology/methods , Virus Replication
7.
Mol Ther ; 30(9): 2909-2922, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35581938

ABSTRACT

Persistence of chronic hepatitis B (CHB) is attributed to maintenance of the intrahepatic pool of the viral covalently closed circular DNA (cccDNA), which serves as the transcriptional template for all viral gene products required for replication. Current nucleos(t)ide therapies for CHB prevent virus production and spread but have no direct impact on cccDNA or expression of viral genes. We describe a potential curative approach using a highly specific engineered ARCUS nuclease (ARCUS-POL) targeting the hepatitis B virus (HBV) genome. Transient ARCUS-POL expression in HBV-infected primary human hepatocytes produced substantial reductions in both cccDNA and hepatitis B surface antigen (HBsAg). To evaluate ARCUS-POL in vivo, we developed episomal adeno-associated virus (AAV) mouse and non-human primate (NHP) models containing a portion of the HBV genome serving as a surrogate for cccDNA. Clinically relevant delivery was achieved through systemic administration of lipid nanoparticles containing ARCUS-POL mRNA. In both mouse and NHP, we observed a significant decrease in total AAV copy number and high on-target indel frequency. In the case of the mouse model, which supports HBsAg expression, circulating surface antigen was durably reduced by 96%. Together, these data support a gene-editing approach for elimination of cccDNA toward an HBV cure.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Animals , Antiviral Agents , DNA, Circular/genetics , DNA, Viral/genetics , Dependovirus/genetics , Hepatitis B/therapy , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/therapeutic use , Hepatitis B virus/genetics , Humans , Liposomes , Mice , Nanoparticles , Virus Replication
8.
PLoS One ; 17(4): e0262516, 2022.
Article in English | MEDLINE | ID: mdl-35363817

ABSTRACT

Nucleos(t)ide analogs are standard-of-care for the treatment of chronic hepatitis B and can effectively reduce hepatitis B virus (HBV) replication but rarely leads to cure. Nucleos(t)ide analogs do not directly eliminate the viral episome, therefore treatment cessation typically leads to rapid viral rebound. While treatment is effective, HBV DNA is still detectable (although not quantifiable) in the periphery of the majority of nucleos(t)ide analog treated HBV patients, even after prolonged treatment. Addressing whether the detectable HBV DNA represents infectious virus is a key unknown and has important implications for the development of a curative treatment for HBV. The minimum HBV genome equivalents required to establish infection in human liver chimeric mice was determined by titration of HBV patient sera and the infectivity in chimeric mice of serum from patients (n = 7) suppressed to the limit of detection on nucleos(t)ide analog therapy was evaluated. A minimum of 5 HBV genome equivalents were required to establish infection in the chimeric mice, confirming this model has sufficient sensitivity to determine whether serum from virally suppressed patients contains infectious virus. Strikingly, serum from 75% (n = 3 out of 4) of nucleos(t)ide-treated HBV patients with DNA that was detectable, but below the lower limit of quantitation, also established infection in the chimeric mice. These results demonstrate that infectious virus is still present in some HBV patients on suppressive nucleos(t)ide therapy. This residual virus may support viral persistence via continuous infection and explain the ongoing risk for HBV-related complications despite long-term suppression on therapy. Thus, additional treatment intensification may facilitate HBV cure.


Subject(s)
Hepatitis B, Chronic , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA, Viral , Hepatitis B virus/genetics , Humans , Mice , Nucleosides/adverse effects , Virus Replication
9.
JHEP Rep ; 4(4): 100449, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35295767

ABSTRACT

Background & Aims: HBV infects over 257 million people worldwide and is associated with the development of hepatocellular carcinoma (HCC). Integration of HBV DNA into the host genome is likely a key driver of HCC oncogenesis. Here, we utilise targeted long-read sequencing to determine the structure of HBV DNA integrations as well as full isoform information of HBV mRNA with more accurate quantification than traditional next generation sequencing platforms. Methods: DNA and RNA were isolated from fresh frozen liver biopsies collected within the GS-US-174-0149 clinical trial. A pan-genotypic panel of biotinylated oligos was developed to enrich for HBV sequences from sheared genomic DNA (∼7 kb) and full-length cDNA libraries from poly-adenylated RNA. Samples were sequenced on the PacBio long-read platform and analysed using a custom bioinformatic pipeline. Results: HBV-targeted long-read DNA sequencing generated high coverage data spanning entire integrations. Strikingly, in 13 of 42 samples (31%) we were able to detect HBV sequences flanked by 2 different chromosomes, indicating a chromosomal translocation associated with HBV integration. Chromosomal translocations were unique to each biopsy sample, suggesting that each originated randomly, and in some cases had evidence of clonal expansion. Using targeted long-read RNA sequencing, we determined that upwards of 95% of all HBV transcripts in patients who are HBeAg-positive originate from cccDNA. In contrast, patients who are HBeAg-negative expressed mostly HBsAg from integrations. Conclusions: Targeted lso-Seq allowed for accurate quantitation of the HBV transcriptome and assignment of transcripts to either cccDNA or integration origins. The existence of multiple unique HBV-associated inter-chromosomal translocations in non-HCC CHB patient liver biopsies suggests a novel mechanism with mutagenic potential that may contribute to progression to HCC. Lay summary: Fresh frozen liver biopsies from patients infected with HBV were subjected to targeted long-read RNA and DNA sequencing. Long-read RNA sequencing captures entire HBV transcripts in a single read, allowing for resolution of overlapping transcripts from the HBV genome. This resolution allowed us to quantify the burden of transcription from integrations vs. cccDNA origin in individual patients. Patients who were HBeAg-positive had a significantly larger fraction of the HBV transcriptome originating from cccDNA compared with those who were HBeAg-negative. Long-read DNA sequencing captured entire integrated HBV sequences including multiple kilobases of flanking host sequence within single reads. This resolution allowed us to describe integration events flanked by 2 different host chromosomes, indicating that integrated HBV DNA are associated with inter-chromosomal translocations. This may lead to significant transcriptional dysregulation and drive progression to HCC.

10.
J Hepatol ; 77(2): 332-343, 2022 08.
Article in English | MEDLINE | ID: mdl-35218813

ABSTRACT

BACKGROUND & AIMS: Chronic HBV is clinically categorized into 4 phases by a combination of serum HBV DNA levels, HBeAg status and alanine aminotransferase (ALT): immunotolerant (IT), immune-active (IA), inactive carrier (IC) and HBeAg-negative hepatitis (ENEG). Immune and virological measurements in the blood have proven useful but are insufficient to explain the interrelation between the immune system and the virus since immune dynamics differ in the blood and liver. Furthermore, the inflammatory response in the liver and parenchymal cells cannot be fully captured in blood. METHODS: Immunological composition and transcriptional profiles of core needle liver-biopsies in chronic HBV phases were compared to those of healthy controls by multiplex immunofluorescence and RNA-sequencing (n = 37 and 78, respectively) analyses. RESULTS: Irrespective of the phase-specific serological profiles, increased immune-gene expression and frequency was observed in chronic HBV compared to healthy livers. Greater transcriptomic deregulation was seen in IA and ENEG (172 vs. 243 DEGs) than in IT and IC (13 vs. 35 DEGs) livers. Interferon-stimulated genes, immune-activation and exhaustion genes (ICOS, CTLA4, PDCD1) together with chemokine genes (CXCL10, CXCL9) were significantly induced in IA and ENEG livers. Moreover, distinct immune profiles associated with ALT elevation and a more accentuated immune-exhaustion profile (CTLA4, TOX, SLAMF6, FOXP3) were observed in ENEG, which set it apart from the IA phase (LGALS9, PDCD1). Interestingly, all HBV phases showed downregulation of metabolic pathways vs. healthy livers (fatty and bile acid metabolism). Finally, increased leukocyte infiltrate correlated with serum ALT, but not with HBV DNA or viral proteins. CONCLUSION: Our comprehensive multi-parametric analysis of human livers revealed distinct inflammatory profiles and pronounced differences in intrahepatic gene profiles across all chronic HBV phases in comparison to healthy liver. LAY SUMMARY: Immunological studies on chronic HBV remain largely restricted to assessment of peripheral responses due to the limited access to the site of infection, the liver. In this study, we comprehensively analyzed livers from a well-defined cohort of patients with chronic HBV and uninfected controls with state-of-the-art techniques, and evaluated the differences in gene expression profiles and inflammation characteristics across distinct disease phases in patients with chronic HBV.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , CTLA-4 Antigen , DNA, Viral/genetics , Hepatitis B e Antigens , Hepatitis B virus/genetics , Humans , Inflammation/genetics
11.
J Infect Dis ; 225(6): 1081-1090, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34279652

ABSTRACT

Inactive carrier phases in chronic hepatitis B virus (HBV) infection present minimal liver disease and HBV replication activity suggesting partial immune reconstitution, although the mechanisms responsible remain elusive. Moreover, hepatitis B surface antigen (HBsAg) production-hypothesized to modulate the immune response-is unaltered. In the current study, we assessed the intrahepatic transcriptome in inactive carriers of HBV versus healthy liver donors, including in the context of diverse HBsAg levels (serum and liver), to better understand the phenomenon of immune control. We found a deregulated liver transcriptome in inactive carriers compared with healthy controls, despite normal liver function. Moreover, diverse HBsAg levels have minimal impact on the liver transcriptome in inactive carriers, although gene correlation analysis revealed that leukocyte activation, recruitment, and innate responses genes were correlated with liver HBsAg levels. These findings provide more insight into the mechanisms underlying anti-HBV strategies currently under development, aimed at interfering with HBsAg production or inducing a state of immune control.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Carrier State , DNA, Viral , Hepatitis B/genetics , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Humans , Liver , Transcriptome
12.
JHEP Rep ; 4(1): 100388, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34950863

ABSTRACT

BACKGROUND & AIMS: We aim to describe the liver immune microenvironment by analyzing liver biopsies from patients with chronic HBV infection (CHB). Host immune cell signatures and their corresponding localization were characterized by analyzing the intrahepatic transcriptome in combination with a custom multiplex immunofluorescence panel. METHOD: Matching FFPE and fresh frozen liver biopsies were collected from immune active patients within the open-label phase IV study GS-US-174-0149. RNA-Seq was conducted on 53 CHB liver biopsies from 46 patients. Twenty-eight of the 53 samples had matched FFPE biopsies and were stained with a 12-plex panel including cell segmentation, immune and viral biomarkers. Corresponding serum samples were screened using the MSD Human V-plex Screen Service to identify peripheral correlates for the immune microenvironment. RESULTS: Using unsupervised clustering of the transcriptome, we reveal two unique liver immune signatures classified as immune high and immune low based on the quantification of the liver infiltrate gene signatures. Multiplex immunofluorescence analysis demonstrated large periportal lymphoid aggregates in immune high samples consisting of CD4 and CD8 T cells, B cells and macrophages. Differentiation of the high and low immune microenvironments was independent of HBeAg status and peripheral viral antigen levels. In addition, longitudinal analysis indicates that treatment and normalization of ALT correlates with a decrease in liver immune infiltrate and inflammation. Finally, we screened a panel of peripheral biomarkers and identified ICAM-1 and CXCL10 as biomarkers that strongly correlate with these unique immune microenvironments. CONCLUSION: These data provide a description of immune phenotypes in patients with CHB and show that immune responses are downregulated in the liver following nucleotide analogue treatment. This may have important implications for both the safety and efficacy of immune modulator programs aimed at HBV cure. LAY SUMMARY: Liver biopsies from patients with chronic hepatitis B were submitted to RNA-Seq and multiplex immunofluorescence and identified two different liver immune microenvironments: immune high and immune low. Immune high patients showed elevated immune pathways, including interferon signaling pathways, and increase presence of immune cells. Longitudinal analysis of biopsies from treatment experienced patients showed that treatment correlates with a marked decrease in inflammation and these findings may have important implications for both safety and efficacy of immune modulator programs for HBV cure.

13.
J Virol ; 95(19): e0029921, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287049

ABSTRACT

Hepatitis B virus (HBV) can integrate into the chromosomes of infected hepatocytes, creating potentially oncogenic lesions that can lead to hepatocellular carcinoma (HCC). However, our current understanding of integrated HBV DNA architecture, burden, and transcriptional activity is incomplete due to technical limitations. A combination of genomics approaches was used to describe HBV integrations and corresponding transcriptional signatures in three HCC cell lines: huH-1, PLC/PRF/5, and Hep3B. To generate high-coverage, long-read sequencing data, a custom panel of HBV-targeting biotinylated oligonucleotide probes was designed. Targeted long-read DNA sequencing captured entire HBV integration events within individual reads, revealing that integrations may include deletions and inversions of viral sequences. Surprisingly, all three HCC cell lines contain integrations that are associated with host chromosomal translocations. In addition, targeted long-read RNA sequencing allowed for the assignment of transcriptional activity to specific integrations and resolved the contribution of overlapping HBV transcripts. HBV transcripts chimeric with host sequences were resolved in their entirety and often included >1,000 bp of host sequence. This study provides the first comprehensive description of HBV integrations and associated transcriptional activity in three commonly utilized HCC-derived cell lines. The application of novel methods sheds new light on the complexity of these integrations, including HBV bidirectional transcription, nested transcripts, silent integrations, and host genomic rearrangements. The observation of multiple HBV-associated chromosomal translocations gives rise to the hypothesis that HBV is a driver of genetic instability and provides a potential new mechanism for HCC development. IMPORTANCE HCC-derived cell lines have served as practical models to study HBV biology for decades. These cell lines harbor multiple HBV integrations and express only HBV surface antigen (HBsAg). To date, an accurate description of the integration burden, architecture, and transcriptional profile of these cell lines has been limited due to technical constraints. We have developed a targeted long-read sequencing assay that reveals the entire architecture of integrations in these cell lines. In addition, we identified five chromosomal translocations with integrated HBV DNA at the interchromosomal junctions. Incorporation of long-read transcriptome sequencing (RNA-Seq) data indicated that many integrations and translocations were transcriptionally silent. The observation of multiple HBV-associated translocations has strong implications regarding the potential mechanisms for the development of HBV-associated HCC.


Subject(s)
Carcinoma, Hepatocellular/virology , Cell Line, Tumor , DNA, Viral/genetics , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Transcription, Genetic , Translocation, Genetic , Virus Integration , Humans , Sequence Analysis, DNA , Sequence Analysis, RNA
14.
J Virol Methods ; 292: 114117, 2021 06.
Article in English | MEDLINE | ID: mdl-33657432

ABSTRACT

Hepatitis B virus (HBV) capsids are assembled from HBV core protein and assembly is a critical step in the propagation of the virus. Due to its multiple functions in the viral life cycle, core is an attractive target for new antiviral therapies. For HBV capsid assembly modulators (CAMs), several resistance mutants have been identified, both from the clinic and in vitro. However, currently there is no convenient in vitro assay to monitor resistance to CAMs in the clinic. Here, we developed a facile, cassette-based phenotyping assay to assess the antiviral activity of CAMs on a panel of clinical isolates. Using this system, the core genes from 13 patients infected with HBV genotypes A-H were expressed as chimeric virus and tested for sensitivity to CAMs. No substantial differences in antiviral activity were observed across genotypes due to the conservation of the drug binding pocket. In addition, we tested a panel of constructs encoding 13 single amino acid polymorphs in the CAM binding site, including some polymorphs with previously-described resistance to CAMs. Overall, 11 of 13 constructs replicated in vitro, 6 constructs showed reduced susceptibility to CAMs. The 11 polymorphs which could replicate in vitro remained sensitive to the nucleotide analog tenofovir alafenamide (TAF), indicating that there is no cross-resistance.


Subject(s)
Capsid , Hepatitis B virus , Antiviral Agents/pharmacology , Capsid Proteins/genetics , Hepatitis B virus/genetics , Humans , Virus Assembly , Virus Replication
15.
Hepatology ; 73(5): 1652-1670, 2021 05.
Article in English | MEDLINE | ID: mdl-32780526

ABSTRACT

BACKGROUND AND AIMS: We conducted haplotype analysis of complete hepatitis B virus (HBV) genomes following deep sequencing from 368 patients across multiple phases of chronic hepatitis B (CHB) infection from four major genotypes (A-D), analyzing 4,110 haplotypes to identify viral variants associated with treatment outcome and disease progression. APPROACH AND RESULTS: Between 18.2% and 41.8% of nucleotides and between 5.9% and 34.3% of amino acids were 100% conserved in all genotypes and phases examined, depending on the region analyzed. Hepatitis B e antigen (HBeAg) loss by week 192 was associated with different haplotype populations at baseline. Haplotype populations differed across the HBV genome and CHB history, this being most pronounced in the precore/core gene. Mean number of haplotypes (frequency) per patient was higher in immune-active, HBeAg-positive chronic hepatitis phase 2 (11.8) and HBeAg-negative chronic hepatitis phase 4 (16.2) compared to subjects in the "immune-tolerant," HBeAg-positive chronic infection phase 1 (4.3, P< 0.0001). Haplotype frequency was lowest in genotype B (6.2, P< 0.0001) compared to the other genotypes (A = 11.8, C = 11.8, D = 13.6). Haplotype genetic diversity increased over the course of CHB history, being lowest in phase 1, increasing in phase 2, and highest in phase 4 in all genotypes except genotype C. HBeAg loss by week 192 of tenofovir therapy was associated with different haplotype populations at baseline. CONCLUSIONS: Despite a degree of HBV haplotype diversity and heterogeneity across the phases of CHB natural history, highly conserved sequences in key genes and regulatory regions were identified in multiple HBV genotypes that should be further investigated as targets for antiviral therapies and predictors of treatment response.


Subject(s)
Conserved Sequence/genetics , Haplotypes/genetics , Hepatitis B virus/genetics , Hepatitis B, Chronic/virology , Adolescent , Adult , Disease Progression , Female , Genetic Variation/genetics , Genome, Viral/genetics , Genotype , Hepatitis B e Antigens/genetics , Hepatitis B, Chronic/pathology , Humans , Male , Middle Aged , Sequence Analysis, DNA , Young Adult
16.
J Viral Hepat ; 28(1): 30-39, 2021 01.
Article in English | MEDLINE | ID: mdl-32894807

ABSTRACT

Both the A194T and a quadruple mutation CYEI (S106C, H126Y, D134E and L269I) in hepatitis B virus (HBV) polymerase reverse transcriptase domain (pol/RT) are suggested to be associated with treatment failure with tenofovir disoproxil fumarate (TDF). To further evaluate this assertion, the prevalence of these mutations at baseline as well as their development and/or loss during TDF and tenofovir alafenamide (TAF) treatment was analysed in 3886 patients enrolled in Gilead HBV clinical studies. In total, six out of 3886 (0.2%) patients carried the rtA194T mutation, while only 1 patient carried a triple CYE and 2 patients carried a quadruple CYEI mutation at baseline. All the patients harbouring rtA194T or CYE/CYEI at baseline achieved viral suppression by week 96 after TDF or TAF treatment. No patients developed an rtA194T mutation or > 1 substitution of CYEI, and the number of patients losing any substitutions of CYEI (n = 17) was similar to the number who developed a single substitution of CYEI (n = 32) during treatment. Phenotypic evaluation of the site-directed mutant (SDM) panel containing these mutations with or without other resistance mutations did not demonstrate a significant shift in TFV and TAF potency in vitro. No evidence of rtA194T and CYEI conferring resistance to TDF or TAF was observed based on the treatment responses to TDF or TAF in patients with mutations at baseline, the lack of selection of mutations after starting TDF or TAF treatment and no change in susceptibility to TFV or TAF in vitro.


Subject(s)
Drug Resistance, Viral , Hepatitis B virus , Alanine , Drug Resistance, Viral/genetics , Hepatitis B virus/genetics , Humans , Mutation , Tenofovir/analogs & derivatives , Tenofovir/therapeutic use
17.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33148795

ABSTRACT

Current therapies rarely cure chronic hepatitis B virus (HBV) infection due to the persistence of the viral episome, the covalently closed circular DNA (cccDNA), in hepatocytes. The hepatitis B virus core-related antigen (HBcrAg), a mixture of the viral precore/core gene products, has emerged as one potential marker to monitor the levels and activities of intrahepatic cccDNA. In this study, a comprehensive characterization of precore/core gene products revealed that HBcrAg components included the classical hepatitis B virus core antigen (HBc) and e antigen (HBeAg) and, additionally, the precore-related antigen, PreC, retaining the N-terminal signal peptide. Both HBeAg and PreC antigens displayed heterogeneous proteolytic processing at their C termini resulting in multiple species, which varied with viral genotypes. HBeAg was the predominant form of HBcrAg in HBeAg-positive patients. Positive correlations were found between HBcrAg and PreC, between HBcrAg and HBeAg, and between PreC and HBeAg but not between HBcrAg and HBc. Serum HBeAg and PreC shared similar buoyant density and size distributions, and both displayed density and size heterogeneity. HBc, but not HBeAg or PreC antigen, was found as the main component of capsids in DNA-containing or empty virions. Neither HBeAg nor PreC protein was able to form capsids in cells or in vitro under physiological conditions. In conclusion, our study provides important new quantitative information on levels of each component of precore/core gene products as well as their biochemical and biophysical characteristics, implying that each component may have distinct functions and applications in reflecting intrahepatic viral activities.IMPORTANCE Chronic hepatitis B virus (HBV) infection afflicts approximately 257 million people, who are at high risk of progressing to chronic liver diseases, including fibrosis, cirrhosis, and hepatocellular carcinoma. Current therapies rarely achieve cure of HBV infection due to the persistence of the HBV episome, the covalently closed circular DNA (cccDNA), in the nuclei of infected hepatocytes. Peripheral markers of cccDNA levels and transcriptional activities are urgently required to guide antiviral therapy and drug development. Serum hepatitis B core-related antigen (HBcrAg) is one such emerging peripheral marker. We have characterized the components of HBcrAg in HBV-infected patients as well as in cell cultures. Our results provide important new quantitative information on levels of each HBcrAg component, as well as their biochemical and biophysical characteristics. Our findings suggest that each HBcrAg component may have distinct functions and applications in reflecting intrahepatic viral activities.


Subject(s)
Biomarkers/analysis , Carcinoma, Hepatocellular/blood , Hepatitis B Core Antigens/blood , Hepatitis B e Antigens/blood , Hepatitis B virus/isolation & purification , Hepatitis B/blood , Liver Neoplasms/blood , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Hepatitis B/complications , Hepatitis B/pathology , Hepatitis B/virology , Humans , Liver Neoplasms/pathology , Liver Neoplasms/virology
18.
J Med Virol ; 92(12): 3420-3425, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32609910

ABSTRACT

Hepatitis B virus (HBV) genotypes impact treatment outcomes and disease progression. The current genotyping methods have limitations in patients with low HBV viral load. In this study, a more sensitive assay has been developed for determining the HBV genotype in HBV DNA suppressed patients. Fifty-five serum samples from 55 chronic hepatitis B patients (HBeAg-, n = 20; HBeAg+, n = 35) across genotypes A to H with long-term nucleos(t)ide analogs (NAs) treatment were collected. All samples had HBV DNA less than 29 IU/mL. Total nucleic acid (viral DNA and RNA) was extracted and a 341 bp amplicon located at HBV S gene overlapping with reverse transcriptase domain of polymerase (pol/RT) was amplified via real time (RT)-nested polymerase chain reaction (PCR) followed by population sequencing. HBV genotype was determined by phylogenetic analysis. The assay successfully amplified HBV S/RT gene from 53 of 55 (96.4%) patient serum samples. Phylogenetic analysis demonstrated that the genotypes of all the 53 PCR positive samples matched the historical genotypes as determined by INNO-LiPA or RT sequence from the corresponding baseline samples. This assay was able to accurately determine HBV genotype irrespective of baseline genotype, HBeAg status, or duration of viral suppression. The ability to determine genotype in virally suppressed patients may facilitate the evaluation of novel treatment agents for HBV in this patient population.

19.
Article in English | MEDLINE | ID: mdl-27872061

ABSTRACT

Cytomegalovirus (CMV) infection is a significant complication after kidney transplantation. We examined the ability of RG7667, a combination of two monoclonal antibodies, to prevent CMV infection in high-risk kidney transplant recipients in a randomized, double-blind, placebo-controlled trial. CMV-seronegative recipients of a kidney transplant from a CMV-seropositive donor (D+R-) were randomized to receive RG7667 (n = 60) or placebo (n = 60) at the time of transplant and 1, 4, and 8 weeks posttransplant. Patients were monitored for CMV viremia every 1 to 2 weeks posttransplant for 24 weeks. Patients who had seroconverted (D+R+) or withdrawn before dosing were excluded from the analysis (n = 4). CMV viremia occurred in 27 of 59 (45.8%) patients receiving RG7667 and 35 of 57 (61.4%) patients receiving placebo (stratum-adjusted difference, 15.3%; P = 0.100) within 12 weeks posttransplant and in 30 of 59 (50.8%) patients receiving RG7667 and 40 of 57 (70.2%) patients receiving placebo (stratum-adjusted difference, 19.3%; P = 0.040) within 24 weeks posttransplant. Median time to CMV viremia was 139 days in patients receiving RG7667 compared to 46 days in patients receiving placebo (hazard ratio, 0.53; P = 0.009). CMV disease was less common in the RG7667 than placebo group (3.4% versus 15.8%; P = 0.030). Adverse events were generally balanced between treatment groups. In high-risk kidney transplant recipients, RG7667 was well tolerated, numerically reduced the incidence of CMV infection within 12 and 24 weeks posttransplant, delayed time to CMV viremia, and was associated with less CMV disease than the placebo. (This study has been registered at ClinicalTrials.gov under registration no. NCT01753167.).


Subject(s)
Antibodies, Monoclonal/therapeutic use , Cytomegalovirus Infections/prevention & control , Kidney Transplantation , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Cytomegalovirus Infections/drug therapy , Female , Humans , Kidney Transplantation/adverse effects , Male , Middle Aged , Placebos , Treatment Outcome , Viremia/prevention & control , Viremia/virology
20.
Antimicrob Agents Chemother ; 59(8): 4919-29, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26055360

ABSTRACT

Cytomegalovirus can cause debilitating and life-threatening disease in newborns infected in utero and immunocompromised individuals, including transplant recipients. RG7667 is a unique combination of two monoclonal antibodies that binds glycoprotein complexes on the surface of cytomegalovirus and inhibits its entry into host cells. A phase 1 first-in-human, randomized, double-blind, placebo-controlled, dose-escalation study of RG7667 given intravenously was conducted in 181 healthy adults. The study involved a single ascending dose stage (1, 3, 5, and 10 mg/kg each antibody; n = 21), a multiple ascending dose stage (5 and 10 mg/kg each antibody monthly for 3 doses; n = 10), and a multiple dose expansion stage (10 mg/kg each antibody monthly for 3 doses; n = 150). Subjects were followed for 85 to 141 days to evaluate safety, tolerability, pharmacokinetics, and immunogenicity. Most adverse events were mild, and the incidence of adverse events was similar among the RG7667 and placebo groups. RG7667 had dose-proportional pharmacokinetics in all three dosing stages, a mean terminal half-life of 20 to 30 days, and an overall pharmacokinetic profile consistent with that of a human monoclonal antibody that lacks endogenous host targets. The proportion of subjects developing an antitherapeutic antibody response was not higher in the RG7667 group than in the placebo group. In summary, single and multiple doses of RG7667 were found to be safe and well-tolerated in healthy adults and had a favorable pharmacokinetic and immunogenicity profile. This study supports further development of RG7667 as a therapy for the prevention and treatment of cytomegalovirus infection in susceptible populations. (This study has been registered at ClinicalTrials.gov under registration no. NCT01496755.).


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antiviral Agents/therapeutic use , Cytomegalovirus/drug effects , Adult , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents/pharmacokinetics , Dose-Response Relationship, Drug , Double-Blind Method , Drug Therapy, Combination/methods , Female , Half-Life , Healthy Volunteers , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...