Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 112(44): 13687-92, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26460033

ABSTRACT

Studies of neural oscillations in the beta band (13-30 Hz) have demonstrated modulations in beta-band power associated with sensory and motor events on time scales of 1 s or more, and have shown that these are exaggerated in Parkinson's disease. However, even early reports of beta activity noted extremely fleeting episodes of beta-band oscillation lasting <150 ms. Because the interpretation of possible functions for beta-band oscillations depends strongly on the time scale over which they occur, and because of these oscillations' potential importance in Parkinson's disease and related disorders, we analyzed in detail the distributions of duration and power for beta-band activity in a large dataset recorded in the striatum and motor-premotor cortex of macaque monkeys performing reaching tasks. Both regions exhibited typical beta-band suppression during movement and postmovement rebounds of up to 3 s as viewed in data averaged across trials, but single-trial analysis showed that most beta oscillations occurred in brief bursts, commonly 90-115 ms long. In the motor cortex, the burst probabilities peaked following the last movement, but in the striatum, the burst probabilities peaked at task end, after reward, and continued through the postperformance period. Thus, what appear to be extended periods of postperformance beta-band synchronization reflect primarily the modulated densities of short bursts of synchrony occurring in region-specific and task-time-specific patterns. We suggest that these short-time-scale events likely underlie the functions of most beta-band activity, so that prolongation of these beta episodes, as observed in Parkinson's disease, could produce deleterious network-level signaling.


Subject(s)
Corpus Striatum/physiology , Macaca/physiology , Motor Cortex/physiology , Movement , Animals , Humans
2.
J Neurophysiol ; 107(7): 1979-95, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22170970

ABSTRACT

A major goal of neuroscience is to understand the functions of networks of neurons in cognition and behavior. Recent work has focused on implanting arrays of ∼100 immovable electrodes or smaller numbers of individually adjustable electrodes, designed to target a few cortical areas. We have developed a recording system that allows the independent movement of hundreds of electrodes chronically implanted in several cortical and subcortical structures. We have tested this system in macaque monkeys, recording simultaneously from up to 127 electrodes in 14 brain regions for up to one year at a time. A key advantage of the system is that it can be used to sample different combinations of sites over prolonged periods, generating multiple snapshots of network activity from a single implant. Used in conjunction with microstimulation and injection methods, this versatile system represents a powerful tool for studying neural network activity in the primate brain.


Subject(s)
Action Potentials/physiology , Brain/cytology , Electrodes, Implanted , Microelectrodes , Movement , Neurons/physiology , Animals , Computer-Aided Design , Macaca , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...