Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(8): 5186-5194, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38311922

ABSTRACT

Isomer-pure functionalized fullerenes are required to boost the development of fullerene chemistry in any field, but their multiple functionalization renders a mixture of regioisomers that are very difficult to purify by chromatography. For the specific case of C70, its nonspherical geometry makes its regioselective functionalization more challenging than that of spherical C60. In this work, the supramolecular mask approach is applied for the first time to C70, which is encapsulated in two different nanocapsules to achieve the Bingel bis-cyclopropanation at α-bonds of opposite poles. Based on the tetragonal prismatic geometry imposed by the smaller supramolecular mask tested, the obtained major bis-adduct is completely reversed (major 5 o'clock) compared to bare C70 functionalization (major 2 o'clock). Moreover, by further restricting the accessibility of C70 using a three-shell Matryoshka mask and dibenzyl-bromomalonate, a single regiospecific 2 o'clock bis-isomer is obtained, owing to the perfect complementarity of the mask and the addend steric properties. The outcome of the reactions is fully explained at the molecular level by means of a thorough molecular dynamics (MD) study of the accessibility of the α-bonds to produce the different bis-adducts.

2.
Phys Chem Chem Phys ; 24(48): 29333-29337, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36472153

ABSTRACT

The agostic bond plays an important role in chemistry, not only in transition metal chemistry but also in main group chemistry. In some complexes with M⋯H-X (X = C, N) interactions, differentiation among agostic, anagostic, and hydrogen bonds is challenging. Here we propose the use of three-centre electron sharing indices to classify M⋯H-X (X = C, N) interactions.

3.
J Med Chem ; 65(20): 13660-13680, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36222708

ABSTRACT

The soluble epoxide hydrolase (sEH) has been suggested as a pharmacological target for the treatment of several diseases, including pain-related disorders. Herein, we report further medicinal chemistry around new benzohomoadamantane-based sEH inhibitors (sEHI) in order to improve the drug metabolism and pharmacokinetics properties of a previous hit. After an extensive in vitro screening cascade, molecular modeling, and in vivo pharmacokinetics studies, two candidates were evaluated in vivo in a murine model of capsaicin-induced allodynia. The two compounds showed an anti-allodynic effect in a dose-dependent manner. Moreover, the most potent compound presented robust analgesic efficacy in the cyclophosphamide-induced murine model of cystitis, a well-established model of visceral pain. Overall, these results suggest painful bladder syndrome as a new possible indication for sEHI, opening a new range of applications for them in the visceral pain field.


Subject(s)
Epoxide Hydrolases , Visceral Pain , Mice , Humans , Animals , Urea/chemistry , Disease Models, Animal , Visceral Pain/chemically induced , Visceral Pain/drug therapy , Capsaicin , Enzyme Inhibitors/pharmacology , Analgesics/pharmacology , Analgesics/therapeutic use , Cyclophosphamide
4.
Front Mol Biosci ; 9: 922361, 2022.
Article in English | MEDLINE | ID: mdl-35860361

ABSTRACT

Protein-ligand binding processes often involve changes in protonation states that can be key to recognize and orient the ligand in the binding site. The pathways through which (bio)molecules interplay to attain productively bound complexes are intricate and involve a series of interconnected intermediate and transition states. Molecular dynamics (MD) simulations and enhanced sampling techniques are commonly used to characterize the spontaneous binding of a ligand to its receptor. However, the effect of protonation state changes of in-pathway residues in spontaneous binding MD simulations remained mostly unexplored. Here, we used molecular dynamics simulations to reconstruct the trypsin-benzamidine binding pathway considering different protonation states of His57. This residue is part of the trypsin catalytic triad and is located more than 10 Å away from Asp189, which is responsible for benzamidine binding in the trypsin S1 pocket. Our MD simulations showed that the binding pathways that benzamidine follow to target the S1 binding site are critically dependent on the His57 protonation state. Binding of benzamidine frequently occurs when His57 is protonated in the delta nitrogen while the binding process is significantly less frequent when His57 is positively charged. Constant-pH MD simulations retrieved the equilibrium populations of His57 protonation states at trypsin active pH offering a clearer picture of benzamidine recognition and binding. These results indicate that properly accounting for protonation states of distal residues can be important in spontaneous binding MD simulations.

5.
J Am Chem Soc ; 144(16): 7146-7159, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35412310

ABSTRACT

Deciphering the molecular mechanisms of enzymatic allosteric regulation requires the structural characterization of functional states and also their time evolution toward the formation of the allosterically activated ternary complex. The transient nature and usually slow millisecond time scale interconversion between these functional states hamper their experimental and computational characterization. Here, we combine extensive molecular dynamics simulations, enhanced sampling techniques, and dynamical networks to describe the allosteric activation of imidazole glycerol phosphate synthase (IGPS) from the substrate-free form to the active ternary complex. IGPS is a heterodimeric bienzyme complex whose HisH subunit is responsible for hydrolyzing glutamine and delivering ammonia for the cyclase activity in HisF. Despite significant advances in understanding the underlying allosteric mechanism, essential molecular details of the long-range millisecond allosteric activation of IGPS remain hidden. Without using a priori information of the active state, our simulations uncover how IGPS, with the allosteric effector bound in HisF, spontaneously captures glutamine in a catalytically inactive HisH conformation, subsequently attains a closed HisF:HisH interface, and finally forms the oxyanion hole in HisH for efficient glutamine hydrolysis. We show that the combined effector and substrate binding dramatically decreases the conformational barrier associated with oxyanion hole formation, in line with the experimentally observed 4500-fold activity increase in glutamine hydrolysis. The allosteric activation is controlled by correlated time-evolving dynamic networks connecting the effector and substrate binding sites. This computational strategy tailored to describe millisecond events can be used to rationalize the effect of mutations on the allosteric regulation and guide IGPS engineering efforts.


Subject(s)
Aminohydrolases , Glutamine , Allosteric Regulation , Aminohydrolases/chemistry , Aminohydrolases/genetics , Aminohydrolases/metabolism , Binding Sites , Glutamine/metabolism
6.
J Med Chem ; 65(6): 4909-4925, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35271276

ABSTRACT

With innumerable clinical failures of target-specific drug candidates for multifactorial diseases, such as Alzheimer's disease (AD), which remains inefficiently treated, the advent of multitarget drug discovery has brought a new breath of hope. Here, we disclose a class of 6-chlorotacrine (huprine)-TPPU hybrids as dual inhibitors of the enzymes soluble epoxide hydrolase (sEH) and acetylcholinesterase (AChE), a multitarget profile to provide cumulative effects against neuroinflammation and memory impairment. Computational studies confirmed the gorge-wide occupancy of both enzymes, from the main site to a secondary site, including a so far non-described AChE cryptic pocket. The lead compound displayed in vitro dual nanomolar potencies, adequate brain permeability, aqueous solubility, human microsomal stability, lack of neurotoxicity, and it rescued memory, synaptic plasticity, and neuroinflammation in an AD mouse model, after low dose chronic oral administration.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Epoxide Hydrolases , Alzheimer Disease/drug therapy , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Disease Models, Animal , Epoxide Hydrolases/antagonists & inhibitors , Mice
7.
J Med Chem ; 64(9): 5429-5446, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33945278

ABSTRACT

The pharmacological inhibition of soluble epoxide hydrolase (sEH) is efficient for the treatment of inflammatory and pain-related diseases. Numerous potent sEH inhibitors (sEHIs) present adamantyl or phenyl moieties, such as the clinical candidates AR9281 or EC5026. Herein, in a new series of sEHIs, these hydrophobic moieties have been merged in a benzohomoadamantane scaffold. Most of the new sEHIs have excellent inhibitory activities against sEH. Molecular dynamics simulations suggested that the addition of an aromatic ring into the adamantane scaffold produced conformational rearrangements in the enzyme to stabilize the aromatic ring of the benzohomoadamantane core. A screening cascade permitted us to select a candidate for an in vivo efficacy study in a murine model of cerulein-induced acute pancreatitis. The administration of 22 improved the health status of the animals and reduced pancreatic damage, demonstrating that the benzohomoadamantane unit is a promising scaffold for the design of novel sEHIs.


Subject(s)
Adamantane/chemistry , Drug Design , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Acute Disease , Adamantane/metabolism , Adamantane/pharmacology , Adamantane/therapeutic use , Animals , Binding Sites , Catalytic Domain , Cell Membrane Permeability/drug effects , Drug Stability , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/metabolism , Half-Life , Humans , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Pancreatitis/drug therapy , Rats , Structure-Activity Relationship
8.
Chemistry ; 27(39): 10099-10106, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-33881199

ABSTRACT

The conformational equilibria and guest exchange process of a resorcin[4]arene derived self-folding cavitand receptor have been characterized in detail by molecular dynamics simulations (MD) and 1 H EXSY NMR experiments. A multi-timescale strategy for exploring the fluxional behaviour of this system has been constructed, exploiting conventional MD and accelerated MD (aMD) techniques. The use of aMD allows the reconstruction of the folding/unfolding process of the receptor by sampling high-energy barrier processes unattainable by conventional MD simulations. We obtained MD trajectories sampling events occurring at different timescales from ns to s: 1) rearrangement of the directional hydrogen bond seam stabilizing the receptor, 2) folding/unfolding of the structure transiting partially open intermediates, and 3) guest departure from different folding stages. Most remarkably, reweighing of the biased aMD simulations provided kinetic barriers that are in very good agreement with those determined experimentally by 1 H NMR. These results constitute the first comprehensive characterization of the complex dynamic features of cavitand receptors. Our approach emerges as a valuable rational design tool for synthetic host-guest systems.


Subject(s)
Ethers, Cyclic , Molecular Dynamics Simulation , Hydrogen Bonding , Molecular Conformation , Resorcinols
9.
Chembiochem ; 22(5): 904-914, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33094545

ABSTRACT

Machine learning (ML) has pervaded most areas of protein engineering, including stability and stereoselectivity. Using limonene epoxide hydrolase as the model enzyme and innov'SAR as the ML platform, comprising a digital signal process, we achieved high protein robustness that can resist unfolding with concomitant detrimental aggregation. Fourier transform (FT) allows us to take into account the order of the protein sequence and the nonlinear interactions between positions, and thus to grasp epistatic phenomena. The innov'SAR approach is interpolative, extrapolative and makes outside-the-box, predictions not found in other state-of-the-art ML or deep learning approaches. Equally significant is the finding that our approach to ML in the present context, flanked by advanced molecular dynamics simulations, uncovers the connection between epistatic mutational interactions and protein robustness.


Subject(s)
Epoxide Hydrolases/chemistry , Epoxide Hydrolases/metabolism , Machine Learning , Mutation , Protein Folding , Protein Multimerization , Rhodococcus/enzymology , Epoxide Hydrolases/genetics , Limonene/chemistry , Limonene/metabolism , Molecular Dynamics Simulation , Protein Engineering
10.
J Am Chem Soc ; 142(37): 16051-16063, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32822170

ABSTRACT

The dynamic adaptability of tetragonal prismatic nanocapsule 18+ in the selective separation of fullerenes and endohedral metallofullerenes (EMFs) remains unexplored. Therefore, the essential molecular details of the fullerene recognition and binding process into the coordination capsule and the origins of fullerene selectivity remain elusive. In this work, the key steps of fullerene recognition and binding processes have been deciphered by designing a protocol which combines 1H-1H exchange spectroscopy (2D-EXSY) NMR experiments, long time-scale Molecular Dynamics (MD) and accelerated Molecular Dynamics (aMD) simulations, which are combined to completely reconstruct the spontaneous binding and unbinding pathways from nanosecond to second time-range. On one hand, binding (k'on) and unbinding (koff) rate constants were extracted from 1H-1H exchange spectroscopy (EXSY) NMR experiments for both C60 and C70. On the other hand, MD and aMD allowed monitoring the molecular basis of the encapsulation and guest competition processes at a very early stage under nonequilibrium conditions. The receptor capsule displays dynamical adaptability features similar to those observed in the process of biomolecular recognition in proteins. In addition, the encapsulation of bis-aza[60]fullerene (C59N)2 within a supramolecular coordination capsule has been studied for the first time, showcasing the pros and cons of the dumbbell-shaped guest in the dynamics of the encapsulation process and in the stability of the final bound adduct. The powerful combination of NMR, MD, and aMD methodologies allows to obtain a precise picture of the subtle events directing the encapsulation and is thus a predictive tool for understanding host-guest encapsulation and interactions in numerous supramolecular systems.

11.
J Med Chem ; 63(17): 9237-9257, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787085

ABSTRACT

In vivo pharmacological inhibition of soluble epoxide hydrolase (sEH) reduces inflammatory diseases, including acute pancreatitis (AP). Adamantyl ureas are very potent sEH inhibitors, but the lipophilicity and metabolism of the adamantane group compromise their overall usefulness. Herein, we report that the replacement of a methylene unit of the adamantane group by an oxygen atom increases the solubility, permeability, and stability of three series of urea-based sEH inhibitors. Most of these oxa-analogues are nanomolar inhibitors of both the human and murine sEH. Molecular dynamics simulations rationalize the molecular basis for their activity and suggest that the presence of the oxygen atom on the adamantane scaffold results in active site rearrangements to establish a weak hydrogen bond. The 2-oxaadamantane 22, which has a good solubility, microsomal stability, and selectivity for sEH, was selected for further in vitro and in vivo studies in models of cerulein-induced AP. Both in prophylactic and treatment studies, 22 diminished the overexpression of inflammatory and endoplasmic reticulum stress markers induced by cerulein and reduced the pancreatic damage.


Subject(s)
Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Pancreatitis/drug therapy , Urea/chemistry , Acute Disease , Animals , Binding Sites , Catalytic Domain , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/metabolism , Half-Life , Humans , Mice , Microsomes/metabolism , Molecular Dynamics Simulation , Pancreatitis/chemically induced , Pancreatitis/pathology , Rats , Solubility , Structure-Activity Relationship , Urea/metabolism , Urea/pharmacology , Urea/therapeutic use
12.
Nanoscale ; 12(6): 3614-3622, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31912074

ABSTRACT

Water soluble 2D crystalline monolayers of fullerenes grow on planar assemblies of engineered consensus tetratricopeptide repeat proteins. Designed fullerene-coordinating tyrosine clamps on the protein introduce specific fullerene binding sites, which facilitate fullerene nucleation. Through reciprocal interactions between the components, the hybrid material assembles into two-dimensional 2 nm thick structures with crystalline order, that conduct photo-generated charges. Thus, the protein-fullerene hybrid material is a demonstration of the developments toward functional materials with protein-based precision control of functional elements.

13.
Nat Commun ; 10(1): 2826, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31249381

ABSTRACT

Bio-catalytic micro- and nanomotors self-propel by the enzymatic conversion of substrates into products. Despite the advances in the field, the fundamental aspects underlying enzyme-powered self-propulsion have rarely been studied. In this work, we select four enzymes (urease, acetylcholinesterase, glucose oxidase, and aldolase) to be attached on silica microcapsules and study how their turnover number and conformational dynamics affect the self-propulsion, combining both an experimental and molecular dynamics simulations approach. Urease and acetylcholinesterase, the enzymes with higher catalytic rates, are the only enzymes capable of producing active motion. Molecular dynamics simulations reveal that urease and acetylcholinesterase display the highest degree of flexibility near the active site, which could play a role on the catalytic process. We experimentally assess this hypothesis for urease micromotors through competitive inhibition (acetohydroxamic acid) and increasing enzyme rigidity (ß-mercaptoethanol). We conclude that the conformational changes are a precondition of urease catalysis, which is essential to generate self-propulsion.


Subject(s)
Acetylcholinesterase/chemistry , Fructose-Bisphosphate Aldolase/chemistry , Glucose Oxidase/chemistry , Nanostructures/chemistry , Urease/chemistry , Animals , Aspergillus niger/enzymology , Biocatalysis , Canavalia/enzymology , Electrophorus , Enzymes, Immobilized/chemistry , Fish Proteins/chemistry , Fungal Proteins/chemistry , Kinetics , Plant Proteins/chemistry , Protein Conformation , Rabbits , Silicon Dioxide/chemistry
14.
Nature ; 568(7753): 557-560, 2019 04.
Article in English | MEDLINE | ID: mdl-30971822

ABSTRACT

The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)-cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease.


Subject(s)
Carcinogenesis/pathology , Cell Cycle , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Liver/enzymology , Liver/pathology , Mitogen-Activated Protein Kinase 12/metabolism , Aged , Animals , Carcinogenesis/drug effects , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Female , Hepatocytes/cytology , Hepatocytes/pathology , Humans , Liver/surgery , Liver Neoplasms/chemically induced , Male , Mice , Middle Aged , Mitogen-Activated Protein Kinase 12/antagonists & inhibitors , Phosphorylation , Pyridones/pharmacology , Retinoblastoma Protein/chemistry , Retinoblastoma Protein/metabolism , Sequence Homology , Substrate Specificity
15.
Angew Chem Int Ed Engl ; 58(10): 3097-3101, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30600584

ABSTRACT

Enzymes exist as an ensemble of conformational states, whose populations can be shifted by substrate binding, allosteric interactions, but also by introducing mutations to their sequence. Tuning the populations of the enzyme conformational states through mutation enables evolution towards novel activity. Herein, Markov state models are used to unveil hidden conformational states of monoamine oxidase from Aspergillus niger (MAO-N). These hidden conformations, not previously observed by any other technique, play a crucial role in substrate binding and enzyme activity. This reveals how distal mutations regulate MAO-N activity by stabilizing these hidden, catalytically important conformational states, but also by modulating the communication pathway between both MAO-N subunits.


Subject(s)
Aspergillus niger/enzymology , Fungal Proteins/chemistry , Monoamine Oxidase/chemistry , Aspergillosis/microbiology , Aspergillus niger/chemistry , Aspergillus niger/metabolism , Fungal Proteins/metabolism , Humans , Markov Chains , Molecular Dynamics Simulation , Monoamine Oxidase/metabolism , Protein Conformation , Substrate Specificity
16.
Chemistry ; 24(39): 9853-9859, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29665099

ABSTRACT

Electrides are ionic substances containing isolated electrons. These confined electrons are topologically characterised by a quasi-atom, that is, a non-nuclear attractor (NNA) of the electron density. The electronic structure of the octahedral 4 A1g Li6+ and 5 A1g Be6 species shows that these species have a large number of NNAs. These NNAs have highly delocalised electron densities and, as a result, the chemical bonding pattern of these systems is reminiscent of that in solid metals, in which metal cations are surrounded by a "sea" of delocalised valence electrons. We propose the term metal cluster electrides to refer to this new class of compounds. In this study, we establish a computational protocol to identify, characterize, and design metal cluster electrides and we elucidate the intricate bonding patterns of this particular type of species.

17.
Chemistry ; 24(47): 12254-12258, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-29633396

ABSTRACT

The conformational landscape of Bacillus megaterium epoxide hydrolase (BmEH) and how it is altered by mutations that confer the enzyme the ability to accept bulky epoxide substrates has been investigated. Extensive molecular dynamics (MD) simulations coupled to active site volume calculations have unveiled relevant features of the enzyme conformational dynamics and function. Our long-timescale MD simulations identify key conformational states not previously observed by means of X-ray crystallography and short MD simulations that present the loop containing one of the catalytic residues, Asp239, in a wide-open conformation, which is likely involved in the binding of the epoxide substrate. Introduction of mutations M145S and F128A dramatically alters the conformational landscape of the enzyme. These singly mutated variants can accept bulky epoxide substrates due to the disorder induced by mutation in the α-helix containing the catalytic Tyr144 and some parts of the lid domain. These changes impact the enzyme active site, which is substantially wider and more complementary to the bulky pharmacologically relevant epoxide substrates.


Subject(s)
Epoxide Hydrolases/metabolism , Epoxy Compounds/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Epoxide Hydrolases/chemistry , Molecular Dynamics Simulation , Quantum Theory , Substrate Specificity
18.
Phys Chem Chem Phys ; 19(6): 4522-4529, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28121319

ABSTRACT

The electronic energy of a system of fermions can be obtained from the second-order reduced density matrix through the contracted Schrödinger equation or its anti-Hermitian counterpart. Both energy expressions depend on the third-order reduced density matrix (3-RDM) which is usually approximated from lower-order densities. The accuracy of these methods depends critically on the set of N-representability conditions enforced in the calculation and the quality of the approximate 3-RDM. There are no benchmark studies including most 3-RDM approximations and, thus far, no assessment of the deterioration of the approximations with correlation effects has been performed. In this paper we introduce a series of tests to assess the performance of 3-RDM approximations in a model system with varying electron correlation effects, the three-electron harmonium atom. The results of this work put forward several limitations of the currently most used 3-RDM approximations for systems with important electron correlation effects.

19.
Chemistry ; 22(8): 2793-800, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26791436

ABSTRACT

The low-lying triplet state of a recently published compound (TMTQ) was analyzed quantum chemically in light of suggestions that it is influenced by Baird aromaticity. Two mesomeric structures describe this state: 1) a zwitterionic Baird aromatic structure with a triplet diradical 8π-electron methano[10]annulene (M10A) dicationic ring and 2) a Hückel aromatic with a neutral closed-shell 10π-electron ring. According to charge and spin density distributions, the Hückel aromatic structure dominates the triplet state (the Baird aromatic contributes at most 12 %), and separation of the aromatic fluctuation index (FLU) into α and ß electron contributions emphasizes this finding. The small singlet-triplet energy gap is due to Hückel aromaticity of the M10A ring, clarified by comparison to the smaller analogues of TMTQ. Yet, TMTQ and its analogues are Hückel-Baird hybrids allowing for tuning between closed-shell 4n+2 Hückel aromaticity and open-shell 4n Baird aromaticity.

20.
Phys Chem Chem Phys ; 18(17): 11700-6, 2016 04 28.
Article in English | MEDLINE | ID: mdl-26689394

ABSTRACT

It is generally observed that quintessential aromatic compounds have delocalised electronic configurations that are of closed-shells or open-shells half-filled with the same spin electrons. Guided by this property, we search for aromatic octahedral clusters of the type X6(q) (X = Li-C and Be-Si, q = -2 to +4) in (2S+1)A1g electronic states with spin multiplicities ranging from the singlet to the septet. With some exceptions, we find that closed-shells or open-shells half-filled with same spin electron systems have large multicentre indices and negative NICS values that are characteristic patterns of aromatic compounds. Our results confirm the existence of octahedral aromaticity but do not allow us to define a general rule for octahedral aromaticity because the ordering of molecular orbitals does not remain the same for different octahedral clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...