Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biophys J ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596785

ABSTRACT

Formation of the immunological synapse (IS) is a key event during initiation of an adaptive immune response to a specific antigen. During this process, a T cell and an antigen presenting cell form a stable contact that allows the T cell to integrate both internal and external stimuli in order to decide whether to activate. The threshold for T cell activation depends on the strength and frequency of the calcium (Ca2+) signaling induced by antigen recognition, and it must be tightly regulated to avoid undesired harm to healthy cells. Potassium (K+) channels are recruited to the IS to maintain the negative membrane potential required to sustain Ca2+ entry. However, the precise localization of K+ channels within the IS remains unknown. Here, we visualized the dynamic subsynaptic distribution of Kv1.3, the main voltage-gated potassium channel in human T cells. Upon T cell receptor engagement, Kv1.3 polarized toward the synaptic cleft and diffused throughout the F-actin rich distal compartment of the synaptic interface-an effect enhanced by CD2-CD58 corolla formation. As the synapse matured, Kv1.3 clusters were internalized at the center of the IS and released in extracellular vesicles. We propose a model in which specific distribution of Kv1.3 within the synapse indirectly regulates the channel function and that this process is limited through Kv1.3 internalization and release in extracellular vesicles.

2.
Front Cell Dev Biol ; 9: 673446, 2021.
Article in English | MEDLINE | ID: mdl-34368126

ABSTRACT

The Jurkat E6.1 clone has been extensively used as a powerful tool for the genetic and biochemical dissection of the TCR signaling pathway. More recently, these cells have been exploited in imaging studies to identify key players in immunological synapse (IS) assembly in superantigen-specific conjugates and to track the dynamics of signaling molecules on glass surfaces coated with activating anti-CD3 antibodies. By comparison, Jurkat cells have been used only scantily for imaging on supported lipid bilayers (SLBs) incorporating laterally mobile TCR and integrin ligands, which allow to study synaptic rearrangements of surface molecules and the fine architecture of the mature IS, likely due to limitations in the assembly of immune synapses with well-defined architecture. Here we have explored whether upregulating the low levels of endogenous LFA-1 expression on Jurkat E6.1 cells through transduction with CD11a- and CD18-encoding lentiviruses can improve IS architecture. We show that, while forced LFA-1 expression did not affect TCR recruitment to the IS, E6.1 LFA-1 high cells assembled better structured synapses, with a tighter distribution of signaling-competent TCRs at the center of the IS. LFA-1 upregulation enhanced protein phosphotyrosine signaling on SLBs but not at the IS formed in conjugates with SEE-pulsed APCs, and led to the constitutive formation of an intracellular phosphotyrosine pool co-localizing with endosomal CD3ζ. This was paralleled by an increase in the levels of p-ZAP-70 and p-Erk both under basal conditions and following activation, and in enhanced Ca2+ mobilization from intracellular stores. The enhancement in early signaling E6.1 LFA-1 high cells did not affect expression of the early activation marker CD69 but led to an increase in IL-2 expression. Our results highlight a new role for LFA-1 in the core architecture of the IS that can be exploited to study the spatiotemporal redistribution of surface receptors on SLBs, thereby extending the potential of E6.1 cells and their derivatives for fine-scale imaging studies.

3.
Commun Biol ; 4(1): 772, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162985

ABSTRACT

Monoclonal antibodies (mAb) and natural ligands targeting costimulatory tumor necrosis factor receptors (TNFR) exhibit a wide range of agonistic activities and antitumor responses. The mechanisms underlying these differential agonistic activities remain poorly understood. Here, we employ a panel of experimental and clinically-relevant molecules targeting human CD40, 4-1BB and OX40 to examine this issue. Confocal and STORM microscopy reveal that strongly agonistic reagents induce clusters characterized by small area and high receptor density. Using antibody pairs differing only in isotype we show that hIgG2 confers significantly more receptor clustering than hIgG1 across all three receptors, explaining its greater agonistic activity, with receptor clustering shielding the receptor-agonist complex from further molecular access. Nevertheless, discrete receptor clustering patterns are observed with different hIgG2 mAb, with a unique rod-shaped assembly observed with the most agonistic mAb. These findings dispel the notion that larger receptor clusters elicit greater agonism, and instead point to receptor density and subsequent super-structure as key determinants.


Subject(s)
Receptors, Tumor Necrosis Factor/agonists , Animals , Antibodies, Monoclonal/pharmacology , Antibody Affinity , CD40 Antigens/agonists , CD40 Antigens/chemistry , Cell Line , Humans , Immunoglobulin G/pharmacology , Mice , Microscopy, Confocal , Receptors, OX40/agonists , Receptors, Tumor Necrosis Factor/chemistry , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
4.
Neuro Oncol ; 23(7): 1087-1099, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33508126

ABSTRACT

BACKGROUND: Genome-wide DNA methylation profiling has recently been developed into a tool that allows tumor classification in central nervous system tumors. Extracellular vesicles (EVs) are released by tumor cells and contain high molecular weight DNA, rendering EVs a potential biomarker source to identify tumor subgroups, stratify patients and monitor therapy by liquid biopsy. We investigated whether the DNA in glioblastoma cell-derived EVs reflects genome-wide tumor methylation and mutational profiles and allows noninvasive tumor subtype classification. METHODS: DNA was isolated from EVs secreted by glioblastoma cells as well as from matching cultured cells and tumors. EV-DNA was localized and quantified by direct stochastic optical reconstruction microscopy. Methylation and copy number profiling was performed using 850k arrays. Mutations were identified by targeted gene panel sequencing. Proteins were differentially quantified by mass spectrometric proteomics. RESULTS: Genome-wide methylation profiling of glioblastoma-derived EVs correctly identified the methylation class of the parental cells and original tumors, including the MGMT promoter methylation status. Tumor-specific mutations and copy number variations (CNV) were detected in EV-DNA with high accuracy. Different EV isolation techniques did not affect the methylation profiling and CNV results. DNA was present inside EVs and on the EV surface. Proteome analysis did not allow specific tumor identification or classification but identified tumor-associated proteins that could potentially be useful for enriching tumor-derived circulating EVs from biofluids. CONCLUSIONS: This study provides proof of principle that EV-DNA reflects the genome-wide methylation, CNV, and mutational status of glioblastoma cells and enables their molecular classification.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , Glioblastoma , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , DNA/metabolism , DNA Copy Number Variations , DNA Methylation , Extracellular Vesicles/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Methylation
5.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33187978

ABSTRACT

Using AI, we identified baricitinib as having antiviral and anticytokine efficacy. We now show a 71% (95% CI 0.15 to 0.58) mortality benefit in 83 patients with moderate-severe SARS-CoV-2 pneumonia with few drug-induced adverse events, including a large elderly cohort (median age, 81 years). An additional 48 cases with mild-moderate pneumonia recovered uneventfully. Using organotypic 3D cultures of primary human liver cells, we demonstrate that interferon-α2 increases ACE2 expression and SARS-CoV-2 infectivity in parenchymal cells by greater than fivefold. RNA-seq reveals gene response signatures associated with platelet activation, fully inhibited by baricitinib. Using viral load quantifications and superresolution microscopy, we found that baricitinib exerts activity rapidly through the inhibition of host proteins (numb-associated kinases), uniquely among antivirals. This reveals mechanistic actions of a Janus kinase-1/2 inhibitor targeting viral entry, replication, and the cytokine storm and is associated with beneficial outcomes including in severely ill elderly patients, data that incentivize further randomized controlled trials.


Subject(s)
Antiviral Agents/pharmacology , Azetidines/pharmacology , COVID-19/mortality , Enzyme Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Liver/virology , Purines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2/pathogenicity , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , COVID-19/metabolism , COVID-19/virology , Cytokine Release Syndrome , Cytokines/metabolism , Drug Evaluation, Preclinical , Female , Gene Expression Profiling , Humans , Interferon alpha-2/metabolism , Italy , Janus Kinases/metabolism , Liver/drug effects , Male , Middle Aged , Patient Safety , Platelet Activation , Proportional Hazards Models , RNA-Seq , Spain , Virus Internalization/drug effects , COVID-19 Drug Treatment
6.
Nat Rev Mol Cell Biol ; 21(12): 750-764, 2020 12.
Article in English | MEDLINE | ID: mdl-33093672

ABSTRACT

Cell-cell interfaces are found throughout multicellular organisms, from transient interactions between motile immune cells to long-lived cell-cell contacts in epithelia. Studies of immune cell interactions, epithelial cell barriers, neuronal contacts and sites of cell-cell fusion have identified a core set of features shared by cell-cell interfaces that critically control their function. Data from diverse cell types also show that cells actively and passively regulate the localization, strength, duration and cytoskeletal coupling of receptor interactions governing cell-cell signalling and physical connections between cells, indicating that cell-cell interfaces have a unique membrane organization that emerges from local molecular and cellular mechanics. In this Review, we discuss recent findings that support the emerging view of cell-cell interfaces as specialized compartments that biophysically constrain the arrangement and activity of their protein, lipid and glycan components. We also review how these biophysical features of cell-cell interfaces allow cells to respond with high selectivity and sensitivity to multiple inputs, serving as the basis for wide-ranging cellular functions. Finally, we consider how the unique properties of cell-cell interfaces present opportunities for therapeutic intervention.


Subject(s)
Cell Communication/physiology , Cell Compartmentation/physiology , Cell Physiological Phenomena/physiology , Animals , Cell Fusion , Epithelial Cells/cytology , Epithelial Cells/physiology , Humans , Mechanotransduction, Cellular/physiology , Neurons/cytology , Neurons/physiology
7.
Nature ; 587(7833): 309-312, 2020 11.
Article in English | MEDLINE | ID: mdl-32650338

ABSTRACT

The Plasmodium species that cause malaria are obligate intracellular parasites, and disease symptoms occur when these parasites replicate in human blood. Despite the risk of immune detection, the parasite delivers proteins that bind to host receptors on the cell surfaces of infected erythrocytes. In the causative parasite of the most deadly form of malaria in humans, Plasmodium falciparum, RIFINs form the largest family of surface proteins displayed by erythrocytes1. Some RIFINs can bind to inhibitory immune receptors, and these RIFINs act as targets for unusual antibodies that contain a LAIR1 ectodomain2-4 or as ligands for LILRB15. RIFINs stimulate the activation of and signalling by LILRB15, which could potentially lead to the dampening of human immune responses. Here, to understand how RIFINs activate LILRB1-mediated signalling, we determine the structure of a RIFIN bound to LILRB1. We show that this RIFIN mimics the natural activating ligand of LILRB1, MHC class I, in its LILRB1-binding mode. A single mutation in the RIFIN disrupts the complex, blocks LILRB1 binding of all tested RIFINs and abolishes signalling in a reporter assay. In a supported lipid bilayer system, which mimics the activation of natural killer (NK) cells by antibody-dependent cell-mediated cytotoxicity, both RIFIN and MHC are recruited to the immunological synapse of NK cells and reduce the activation of NK cells, as measured by the mobilization of perforin. Therefore, LILRB1-binding RIFINs mimic the binding mode of the natural ligand of LILRB1 and suppress the function of NK cells.


Subject(s)
Leukocyte Immunoglobulin-like Receptor B1/chemistry , Leukocyte Immunoglobulin-like Receptor B1/immunology , Malaria, Falciparum/immunology , Membrane Proteins/chemistry , Membrane Proteins/immunology , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Amino Acid Sequence , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Binding Sites/immunology , Histocompatibility Antigens Class I/immunology , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Leukocyte Immunoglobulin-like Receptor B1/metabolism , Ligands , Lipid Bilayers , Lymphocyte Activation , Malaria, Falciparum/parasitology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Molecular Mimicry/immunology , Mutation , Perforin/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Signal Transduction
8.
Front Cell Dev Biol ; 8: 608484, 2020.
Article in English | MEDLINE | ID: mdl-33537301

ABSTRACT

A central process in immunity is the activation of T cells through interaction of T cell receptors (TCRs) with agonistic peptide-major histocompatibility complexes (pMHC) on the surface of antigen presenting cells (APCs). TCR-pMHC binding triggers the formation of an extensive contact between the two cells termed the immunological synapse, which acts as a platform for integration of multiple signals determining cellular outcomes, including those from multiple co-stimulatory/inhibitory receptors. Contributors to this include a number of chemokine receptors, notably CXC-chemokine receptor 4 (CXCR4), and other members of the G protein-coupled receptor (GPCR) family. Although best characterized as mediators of ligand-dependent chemotaxis, some chemokine receptors are also recruited to the synapse and contribute to signaling in the absence of ligation. How these and other GPCRs integrate within the dynamic structure of the synapse is unknown, as is how their normally migratory Gαi-coupled signaling is terminated upon recruitment. Here, we report the spatiotemporal organization of several GPCRs, focusing on CXCR4, and the G protein Gαi2 within the synapse of primary human CD4+ T cells on supported lipid bilayers, using standard- and super-resolution fluorescence microscopy. We find that CXCR4 undergoes orchestrated phases of reorganization, culminating in recruitment to the TCR-enriched center. This appears to be dependent on CXCR4 ubiquitination, and does not involve stable interactions with TCR microclusters, as viewed at the nanoscale. Disruption of this process by mutation impairs CXCR4 contributions to cellular activation. Gαi2 undergoes active exclusion from the synapse, partitioning from centrally-accumulated CXCR4. Using a CRISPR-Cas9 knockout screen, we identify several diverse GPCRs with contributions to T cell activation, most significantly the sphingosine-1-phosphate receptor S1PR1, and the oxysterol receptor GPR183. These, and other GPCRs, undergo organization similar to CXCR4; including initial exclusion, centripetal transport, and lack of receptor-TCR interactions. These constitute the first observations of GPCR dynamics within the synapse, and give insights into how these receptors may contribute to T cell activation. The observation of broad GPCR contributions to T cell activation also opens the possibility that modulating GPCR expression in response to cell status or environment may directly regulate responsiveness to pMHC.

9.
Wellcome Open Res ; 5: 42, 2020.
Article in English | MEDLINE | ID: mdl-36865034

ABSTRACT

Background: The leukaemia-derived Jurkat E6.1 cell line has been used as a model T cell in the study of many aspects of T cell biology, most notably activation in response to T cell receptor (TCR) engagement. Methods: We present whole-transcriptome RNA-Sequencing data for Jurkat E6.1 cells in the resting state and two hours post-activation via TCR and CD28. We compare early transcriptional responses in the presence and absence of the chemokines CXCL12 and CCL19, and perform a basic comparison between observed transcriptional responses in Jurkat E6.1 cells and those in primary human T cells using publicly deposited data. Results: Jurkat E6.1 cells have many of the hallmarks of standard T cell transcriptional responses to activation, but lack most of the depth of responses in primary cells. Conclusions: These data indicate that Jurkat E6.1 cells hence represent only a highly simplified model of early T cell transcriptional responses.

10.
Immunity ; 51(2): 310-323.e7, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31204070

ABSTRACT

The tumor necrosis factor receptor superfamily member HVEM is one of the most frequently mutated surface proteins in germinal center (GC)-derived B cell lymphomas. We found that HVEM deficiency increased B cell competitiveness during pre-GC and GC responses. The immunoglobulin (Ig) superfamily protein BTLA regulated HVEM-expressing B cell responses independently of B-cell-intrinsic signaling via HVEM or BTLA. BTLA signaling into T cells through the phosphatase SHP1 reduced T cell receptor (TCR) signaling and preformed CD40 ligand mobilization to the immunological synapse, thus diminishing the help delivered to B cells. Moreover, T cell deficiency in BTLA cooperated with B cell Bcl-2 overexpression, leading to GC B cell outgrowth. These results establish that HVEM restrains the T helper signals delivered to B cells to influence GC selection outcomes, and they suggest that BTLA functions as a cell-extrinsic suppressor of GC B cell lymphomagenesis.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Proliferation , Immunological Synapses , Lymphocyte Activation , Mice , Mice, Knockout , Mice, Transgenic , Paracrine Communication , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Immunologic/genetics , Signal Transduction
11.
Methods Mol Biol ; 1947: 183-197, 2019.
Article in English | MEDLINE | ID: mdl-30969417

ABSTRACT

How G protein-coupled receptors are assembled is a matter of considerable interest owing in large part to their remarkable pharmacological importance. For determining receptor stoichiometry, resonance energy transfer-based methods offer considerable advantages insofar as they provide the necessary spatial resolution, and because measurements can be made in situ, relatively easily. This chapter describes three complementary stoichiometric assays that rely on measurements of bioluminescence resonance energy transfer. These quantitative approaches make it possible to identify true protein-protein interactions from non-specific associations that inevitably result from constraining proteins in cellular membranes. In our experience, concordant data obtained in two or more of these assays, benchmarked with suitable controls, strongly predict receptor stoichiometry.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/methods , Cell Membrane/metabolism , Luciferases, Renilla/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Fluorescence , HEK293 Cells , Humans , Ligands , Protein Binding , Protein Conformation
12.
Biophys J ; 116(1): 31-41, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30558888

ABSTRACT

G-protein-coupled receptors (GPCRs) comprise the largest and most pharmacologically important family of cell-surface receptors encoded by the human genome. In many instances, the distinct signaling behavior of certain GPCRs has been explained in terms of the formation of heteromers with, for example, distinct signaling properties and allosteric cross-regulation. Confirmation of this has, however, been limited by the paucity of reliable methods for probing heteromeric GPCR interactions in situ. The most widely used assays for GPCR stoichiometry, based on resonance energy transfer, are unsuited to reporting heteromeric interactions. Here, we describe a targeted bioluminescence resonance energy transfer (BRET) assay, called type-4 BRET, which detects both homo- and heteromeric interactions using induced multimerization of protomers within such complexes, at constant expression. Using type-4 BRET assays, we investigate heterodimerization among known GPCR homodimers: the CXC chemokine receptor 4 and sphingosine-1-phosphate receptors. We observe that CXC chemokine receptor 4 and sphingosine-1-phosphate receptors can form heterodimers with GPCRs from their immediate subfamilies but not with more distantly related receptors. We also show that heterodimerization appears to disrupt homodimeric interactions, suggesting the sharing of interfaces. Broadly, these observations indicate that heterodimerization results from the divergence of homodimeric receptors and will therefore likely be restricted to closely related homodimeric GPCRs.


Subject(s)
Protein Multimerization , Receptors, CXCR4/chemistry , Sphingosine-1-Phosphate Receptors/chemistry , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Sphingosine-1-Phosphate Receptors/metabolism
13.
Sci Signal ; 11(561)2018 12 18.
Article in English | MEDLINE | ID: mdl-30563863

ABSTRACT

For many years, the high-affinity receptor for immunoglobulin E (IgE) FcεRI, which is expressed by mast cells and basophils, has been widely held to be the exemplar of cross-linking (that is, aggregation dependent) signaling receptors. We found, however, that FcεRI signaling could occur in the presence or absence of receptor cross-linking. Using both cell and cell-free systems, we showed that FcεRI signaling was stimulated by surface-associated monovalent ligands through the passive, size-dependent exclusion of the receptor-type tyrosine phosphatase CD45 from plasma membrane regions of FcεRI-ligand engagement. Similarly to the T cell receptor, FcεRI signaling could also be initiated in a ligand-independent manner. These data suggest that a simple mechanism of CD45 exclusion-based receptor triggering could function together with cross-linking-based FcεRI signaling, broadening mast cell and basophil reactivity by enabling these cells to respond to both multivalent and surface-presented monovalent antigens. These findings also strengthen the case that a size-dependent, phosphatase exclusion-based receptor triggering mechanism might serve generally to facilitate signaling by noncatalytic immune receptors.


Subject(s)
Cell Degranulation , Immunoglobulin E/metabolism , Leukemia, Basophilic, Acute/immunology , Leukocyte Common Antigens/metabolism , Mast Cells/immunology , Receptors, IgE/metabolism , Animals , CRISPR-Cas Systems , Cross-Linking Reagents/chemistry , Integrins/metabolism , Leukemia, Basophilic, Acute/metabolism , Leukemia, Basophilic, Acute/pathology , Leukocyte Common Antigens/genetics , Mast Cells/metabolism , Rats , Receptors, IgE/antagonists & inhibitors , Receptors, IgE/genetics , Tumor Cells, Cultured
14.
J Cell Sci ; 132(4)2018 10 02.
Article in English | MEDLINE | ID: mdl-30209137

ABSTRACT

The spatiotemporal regulation of signalling proteins at the contacts formed between immune cells and their targets determines how and when immune responses begin and end. Therapeutic control of immune responses therefore relies on thorough elucidation of the molecular processes occurring at these interfaces. However, the detailed investigation of each component's contribution to the formation and regulation of the contact is hampered by the complexities of cell composition and architecture. Moreover, the transient nature of these interactions creates additional challenges, especially in the use of advanced imaging technology. One approach that circumvents these problems is to establish in vitro systems that faithfully mimic immune cell interactions, but allow complexity to be 'dialled-in' as needed. Here, we present an in vitro system that makes use of synthetic vesicles that mimic important aspects of immune cell surfaces. Using this system, we began to explore the spatial distribution of signalling molecules (receptors, kinases and phosphatases) and how this changes during the initiation of signalling. The GUV/cell system presented here is expected to be widely applicable.


Subject(s)
Cell Communication/immunology , Cell Membrane/metabolism , Signal Transduction/immunology , Unilamellar Liposomes/metabolism , Humans , Jurkat Cells , Phosphatidylcholines/immunology , Phosphatidylcholines/metabolism , Protein Binding/immunology , Unilamellar Liposomes/immunology
15.
J Cell Biol ; 217(9): 2983-2985, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30108125

ABSTRACT

Natural killer cells target antibody-bound cells following engagement of the Fc receptor CD16. Srpan et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201712085) reveal that activation-induced shedding of CD16 leads to more motile behavior, allowing more targets to be engaged and killed in a given time.


Subject(s)
Killer Cells, Natural , Receptors, Fc , Synapses
16.
Trends Pharmacol Sci ; 39(2): 96-108, 2018 02.
Article in English | MEDLINE | ID: mdl-29122289

ABSTRACT

How G protein-coupled receptors (GPCRs) are organized at the cell surface remains highly contentious. Single-molecule (SM) imaging is starting to inform this debate as receptor behavior can now be visualized directly, without the need for interpreting ensemble data. The limited number of SM studies of GPCRs undertaken to date have strongly suggested that dimerization is at most transient, and that most receptors are monomeric at any given time. However, even SM data has its caveats and needs to be interpreted carefully. Here, we discuss the types of SM imaging strategies used to examine GPCR stoichiometry and consider some of these caveats. We also emphasize that attempts to resolve the debate ought to rely on orthogonal approaches to measuring receptor stoichiometry.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Single Molecule Imaging/methods , Animals , Humans , Ligands , Protein Subunits/chemistry , Protein Subunits/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
17.
Cell Rep ; 20(11): 2654-2665, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28903045

ABSTRACT

The organization of Rhodopsin-family G protein-coupled receptors (GPCRs) at the cell surface is controversial. Support both for and against the existence of dimers has been obtained in studies of mostly individual receptors. Here, we use a large-scale comparative study to examine the stoichiometric signatures of 60 receptors expressed by a single human cell line. Using bioluminescence resonance energy transfer- and single-molecule microscopy-based assays, we found that a relatively small fraction of Rhodopsin-family GPCRs behaved as dimers and that these receptors otherwise appear to be monomeric. Overall, the analysis predicted that fewer than 20% of ∼700 Rhodopsin-family receptors form dimers. The clustered distribution of the dimers in our sample and a striking correlation between receptor organization and GPCR family size that we also uncover each suggest that receptor stoichiometry might have profoundly influenced GPCR expansion and diversification.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Rhodopsin/chemistry , Rhodopsin/metabolism
18.
Sci Adv ; 3(6): e1603032, 2017 06.
Article in English | MEDLINE | ID: mdl-28691087

ABSTRACT

T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions.


Subject(s)
Actins/metabolism , Cytoskeleton , Immunological Synapses/metabolism , Actin Cytoskeleton/metabolism , Animals , Biomarkers , Cell Line , Gene Rearrangement, T-Lymphocyte , Humans , Lymphocyte Activation , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
19.
J Cell Biol ; 216(4): 1123-1141, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28289091

ABSTRACT

Signal integration between activating Fc receptors and inhibitory signal regulatory protein α (SIRPα) controls macrophage phagocytosis. Here, using dual-color direct stochastic optical reconstruction microscopy, we report that Fcγ receptor I (FcγRI), FcγRII, and SIRPα are not homogeneously distributed at macrophage surfaces but are organized in discrete nanoclusters, with a mean radius of 71 ± 11 nm, 60 ± 6 nm, and 48 ± 3 nm, respectively. Nanoclusters of FcγRI, but not FcγRII, are constitutively associated with nanoclusters of SIRPα, within 62 ± 5 nm, mediated by the actin cytoskeleton. Upon Fc receptor activation, Src-family kinase signaling leads to segregation of FcγRI and SIRPα nanoclusters to be 197 ± 3 nm apart. Co-ligation of SIRPα with CD47 abrogates nanocluster segregation. If the balance of signals favors activation, FcγRI nanoclusters reorganize into periodically spaced concentric rings. Thus, a nanometer- and micron-scale reorganization of activating and inhibitory receptors occurs at the surface of human macrophages concurrent with signal integration.


Subject(s)
Macrophages/metabolism , Membranes/metabolism , Receptors, IgG/metabolism , Receptors, Immunologic/metabolism , Actin Cytoskeleton/metabolism , CD47 Antigen/metabolism , Carrier Proteins/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Phagocytosis/physiology , Protein Binding/physiology , Signal Transduction/physiology , src-Family Kinases/metabolism
20.
Nano Lett ; 16(4): 2633-8, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26923775

ABSTRACT

Measuring small forces is a major challenge in cell biology. Here we improve the spatial resolution and accuracy of force reconstruction of the well-established technique of traction force microscopy (TFM) using STED microscopy. The increased spatial resolution of STED-TFM (STFM) allows a greater than 5-fold higher sampling of the forces generated by the cell than conventional TFM, accessing the nano instead of the micron scale. This improvement is highlighted by computer simulations and an activating RBL cell model system.


Subject(s)
Computer Simulation , Microscopy, Scanning Probe , Models, Theoretical , Traction , Algorithms , Cell Adhesion , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Microscopy, Scanning Probe/instrumentation , Microscopy, Scanning Probe/methods , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...