Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Environ Int ; 186: 108608, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554503

ABSTRACT

Bumblebees are among the most important wild bees for pollination of crops and securing wildflower diversity. However, their abundance and diversity have been on a steady decrease in the last decades. One of the most important factors leading to their decline is the frequent use of plant protection products (PPPs) in agriculture, which spread into forests and natural reserves. Mixtures of different PPPs pose a particular threat because of possible synergistic effects. While there is a comparatively large body of studies on the effects of PPPs on honeybees, we still lack data on wild bees. We here investigated the influence of the frequent fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their combination on bumblebees. Cognitive performance and foraging flights of bumblebees were studied. They are essential for the provisioning and survival of the colony. We introduce a novel method for testing four treatments simultaneously on the same colony, minimizing inter-colony differences. For this, we successfully quartered the colony and moved the queen daily between compartments. Bumblebees appeared astonishingly resilient to the PPPs tested or they have developed mechanisms for detoxification. Neither learning capacity nor flight activity were inhibited by treatment with the single PPPs or their combination.


Subject(s)
Biphenyl Compounds , Fungicides, Industrial , Neonicotinoids , Niacinamide/analogs & derivatives , Bees/drug effects , Bees/physiology , Animals , Fungicides, Industrial/toxicity , Strobilurins , Insecticides/toxicity , Pyridines/toxicity
2.
Ecol Lett ; 27(1): e14336, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38073071

ABSTRACT

Biodiversity-ecosystem functioning (BEF) research has provided strong evidence and mechanistic underpinnings to support positive effects of biodiversity on ecosystem functioning, from single to multiple functions. This research has provided knowledge gained mainly at the local alpha scale (i.e. within ecosystems), but the increasing homogenization of landscapes in the Anthropocene has raised the potential that declining biodiversity at the beta (across ecosystems) and gamma scales is likely to also impact ecosystem functioning. Drawing on biodiversity theory, we propose a new statistical framework based on Hill-Chao numbers. The framework allows decomposition of multifunctionality at gamma scales into alpha and beta components, a critical but hitherto missing tool in BEF research; it also allows weighting of individual ecosystem functions. Through the proposed decomposition, new BEF results for beta and gamma scales are discovered. Our novel approach is applicable across ecosystems and connects local- and landscape-scale BEF assessments from experiments to natural settings.


Subject(s)
Biodiversity , Ecosystem
3.
Curr Biol ; 34(1): 56-67.e5, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38118450

ABSTRACT

Spider orb webs have evolved to stop flying prey, fast and slow alike. One of the main web elements dissipating impact energy is the radial fibers, or major ampullate silks, which possess a toughness surpassing most man-made materials. Orb webs are extended phenotypes, and as such their architectural elements, including major ampullate silks, have been selected to optimize prey capture under the respective environmental conditions. In this study, we investigated the correlation of three landscape scales and three microhabitat characteristics with intrinsic silk properties (elastic modulus, yield stress, tensile strength, extensibility, and toughness) to understand underlying ecological patterns. For this purpose, we collected and mechanically tested major ampullate silks from 50 spider species inhabiting large altitudinal and climatic gradients in Colombia. Using regression analysis and model selection, we investigated the environmental drivers of inter- and intra-specific patterns of major ampullate silk properties, taking into account phylogenetic relatedness based on newly sequenced mitochondrial genomes. We found that the total amount of energy absorbed, i.e., toughness and tensile strength, is higher for fibers from species inhabiting regions where heavy rainfall is common. Interestingly, we observe the same general trend between individuals of the same species, stressing the importance of this environmental driver. We also observe a phylogenetic conservation in the relation of environmental variables with silk tensile strength and yield stress. In conclusion, the increase in major ampullate silk tensile strength and toughness may reflect an adaptation to prevent frequent rain damage to orb webs and the associated energetic loss.


Subject(s)
Silk , Spiders , Animals , Base Sequence , Phylogeny , Regression Analysis , Spiders/genetics , Tensile Strength
5.
Nat Commun ; 14(1): 6191, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848442

ABSTRACT

Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.


Subject(s)
Deep Learning , Animals , Tropical Climate , Forests , Biodiversity , Trees , Ecosystem , Conservation of Natural Resources
6.
J Hazard Mater ; 458: 131905, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37421857

ABSTRACT

The diesel-powered transportation sector is a major producer of environmental pollution in the form of micro- and nanoscale diesel exhaust particles (DEP). Pollinators, such as wild bees, may inhale DEP or ingest it orally through plant nectar. However, if these insects are adversely affected by DEP is largely unknown. To investigate potential health threats of DEP to pollinators, we exposed individuals of Bombus terrestris to different concentrations of DEP. We analysed the polycyclic aromatic hydrocarbons (PAH) content of DEP since these are known to elicit adverse effects on invertebrates. We investigated the dose-dependent effects of those well-characterized DEP on survival and fat body content, as a proxy for the insects' health condition, in acute and chronic oral exposure experiments. Acute oral exposure to DEP showed no dose-dependent effects on survival or fat body content of B. terrestris. However, we could show dose-dependent effects after chronic oral exposure with high doses of DEP where significantly increased mortality was observed. Further, there was no dose-dependent effect of DEP on the fat body content after exposure. Our results give insights into how the accumulation of high concentrations of DEP e.g., near heavily trafficked sites, can influence insect pollinators' health and survival.


Subject(s)
Particulate Matter , Vehicle Emissions , Bees , Animals , Vehicle Emissions/analysis
7.
Sci Total Environ ; 892: 164670, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37290643

ABSTRACT

Microplastic contamination in soil has become a global environmental threat as it adversely affects terrestrial organisms like earthworms as well as soil properties. Especially biodegradable polymers have recently been used as an alternative to conventional polymer types, although their impact remains poorly understood. Thus, we studied the effect of conventional (polystyrene: PS, polyethylene terephthalate: PET, polypropylene: PP) versus aliphatic polyesters classified as biodegradable polymers (poly-(l-lactide): PLLA, polycaprolactone: PCL) on the earthworm Eisenia fetida and soil properties (pH and cation exchange capacity). We addressed direct effects on the weight gain and reproductive success of E. fetida, and indirect effects, like changes in the gut microbial composition as well as the production of short-chain fatty acids by the gut microbiota. Earthworms were exposed for eight weeks in an artificial soil amended with two environmentally relevant concentrations (1 % and 2.5 % (w/w)) of the different microplastic types. PLLA and PCL boosted the number of cocoons produced by 135 % and 54 %, respectively. Additionally, exposure to these two polymers increased number of hatched juveniles, changed gut microbial beta-diversity, and increased the production of the short chain fatty acid lactate compared to the control treatments. Interestingly, we also found a positive effect of PP on the earthworm's bodyweight and reproductive success. The interaction of microplastic and earthworms decreased soil pH by about 1.5 units in the presence of PLLA and PCL. No polymer effect on the cation exchange capacity of soil was found. In general, neither the presence of conventional nor biodegradable polymers had any adverse effects on any of the studied endpoints. Our results suggest that the effects of microplastic highly depend on the polymer type, and that the degradation of biodegradable polymers might be enhanced in the gut of earthworms, which implies that they may use biodegradable polymers as a potential carbon source.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Oligochaeta/metabolism , Plastics/metabolism , Microplastics/metabolism , Soil Pollutants/analysis , Soil/chemistry , Reproduction
8.
Ecol Evol ; 13(6): e10180, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37351478

ABSTRACT

Insect decline is a major threat to ecosystems around the world as they provide many important functions, such as pollination or pest control. Pollution is one of the main reasons for the decline, alongside changes in land use, global warming, and invasive species. While negative impacts of pesticides are well-studied, there is still a lack of knowledge about the effects of other anthropogenic pollutants, such as airborne particulate matter, on insects. To address this, we exposed workers of the bumblebee Bombus terrestris to sublethal doses of diesel exhaust particles (DEPs) and brake dust, orally or via air. After 7 days, we looked at the composition of the gut microbiome and tracked changes in gene expression. While there were no changes in the other treatments, oral DEP exposure significantly altered the structure of the gut microbiome. In particular, the core bacterium Snodgrassella had a decreased abundance in the DEP treatment. Similarly, transcriptome analysis revealed changes in gene expression after oral DEP exposure, but not in the other treatments. The changes are related to metabolism and signal transduction, which indicates a general stress response. Taken together, our results suggest potential health effects of DEP exposure on insects, here shown in bumblebees, as gut dysbiosis may increase the susceptibility of bumblebees to pathogens, while a general stress response may lower available energy resources. Those effects may exacerbate under natural conditions where insects face a multiple-stressor environment.

9.
Environ Microbiol ; 25(12): 2776-2791, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37041018

ABSTRACT

Microplastic (MP) is an environmental burden and enters food webs via ingestion by macrofauna, including isopods (Porcellio scaber) in terrestrial ecosystems. Isopods represent ubiquitously abundant, ecologically important detritivores. However, MP-polymer specific effects on the host and its gut microbiota are unknown. We tested the hypothesis that biodegradable (polylactic acid [PLA]) and non-biodegradable (polyethylene terephthalate [PET]; polystyrene [PS]) MPs have contrasting effects on P. scaber mediated by changes of the gut microbiota. The isopod fitness after an 8-week MP-exposure was generally unaffected, although the isopods showed avoidance behaviour to PS-food. MP-polymer specific effects on gut microbes were detected, including a stimulation of microbial activity by PLA compared with MP-free controls. PLA stimulated hydrogen emission from isopod guts, while PET and PS were inhibitory. We roughly estimated 107 kg year-1 hydrogen emitted from the isopods globally and identified their guts as anoxic, significant mobile sources of reductant for soil microbes despite the absence of classical obligate anaerobes, likely due to Enterobacteriaceae-related fermentation activities that were stimulated by lactate generated during PLA-degradation. The findings suggest negative effects of PET and PS on gut fermentation, modulation of important isopod hydrogen emissions by MP pollution and the potential of MP to affect terrestrial food webs.


Subject(s)
Isopoda , Microbiota , Animals , Isopoda/physiology , Microplastics/pharmacology , Plastics , Eating , Polyesters
10.
NanoImpact ; 30: 100465, 2023 04.
Article in English | MEDLINE | ID: mdl-37119946

ABSTRACT

The uptake of microplastic particles (MPP) by organisms is frequently described and poses a potential risk for these organisms and ultimately for humans either through direct uptake or trophic transfer. Currently, the in-situ detection of MPP in organisms is typically based on histological examination of tissue sections after uptake of fluorescently-labelled MPP and is thus not feasible for environmental samples. The alternative approach is purification of MPP from whole organisms or organs by chemical digestion and subsequent spectroscopic detection (FT-IR or Raman). While this approach is feasible for un-labelled particles it goes along with loss of any spatial information related to the location in the tissue. In our study we aimed at providing a workflow for the localisation and identification of non-fluorescent and fluorescent polystyrene (PS) particles (fragments, size range 2-130 µm) in tissue sections of the model organism Eisenia fetida with Raman spectroscopic imaging (RSI). We provide methodological approaches for the preparation of the samples, technical parameters for the RSI measurements and data analysis for PS differentiation in tissue sections. The developed approaches were combined in a workflow for the in-situ analysis of MPP in tissue sections. The spectroscopic analysis requires differentiation of spectra of MPP and interfering compounds, which is challenging given the complexity of tissue. Therefore, a classification algorithm was developed to differentiate PS particles from haem, intestinal contents and surrounding tissue. It allows the differentiation of PS particles from protein in the tissue of E. fetida with an accuracy of 95%. The smallest PS particle detected in the tissue was 2 µm in diameter. We show that it is possible to localise and identify non-fluorescent and fluorescent ingested PS particles directly in tissue sections of E. fetida in the gut lumen and the adjacent tissue.


Subject(s)
Plastics , Polystyrenes , Humans , Polystyrenes/analysis , Plastics/analysis , Spectroscopy, Fourier Transform Infrared , Microplastics , Spectrum Analysis, Raman
11.
Ecol Evol ; 13(2): e9760, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36778840

ABSTRACT

Obligate mutualistic plant-ants are often constrained by their plant partner's capacity to provide resources. However, despite this limitation, some ant partners actively reject potential prey items and instead drop them from the plant rather than consuming them, leaving the ants entirely reliant on host plant-provided food, including that provided indirectly by the symbiotic scale insects that ants tend inside the plants. This dependency potentially increases the efficiency of these ants in defending their host. We hypothesize that if this ant behavior was beneficial to the symbiosis, prey rejection by ants would be observed across multiple plant host species. We also hypothesize that plant-provided food items and symbiotic scale insects from other ant plants should be rejected. We address these hypotheses in the Crematogaster ant-Macaranga plant system, in which plants provide living space and food, while ants protect plants from herbivory. We observed food acceptance and rejection behavior across five ant species and three plant host species. Ants were offered three types of food: termites as a surrogate herbivore, symbiotic scale insects, and nutritious food bodies (FB) produced by different host plant species. The unique ant species living in M. winkleri was the most likely to reject food items not provided by the plant species, followed by ants in M. glandibracteolata, while ants in M. pearsonii accepted most items offered to them. Using stable isotopes, chemical cues, and proteomic analyses, we demonstrate that this behavior was not related to differences between plant species in nutritional quality or composition of FB. Isotopic signatures revealed that certain species are primary consumers but other ant species can be secondary consumers even where surrogate herbivores are rejected, although these values varied depending on the ant developmental stage and plant species. Macaranga pearsonii and M. glandibracteolata, the two most closely related plant species, had most similar surface chemical cues of FB. However, M. glandibracteolata had strongest differences in food body nutritional content, isotopic signatures, and protein composition from either of the other two plant species studied. Taken together we believe our results point toward potential host coercion of symbiont ants by plants in the genus Macaranga Thouars (Euphorbiaceae).

12.
Sci Rep ; 13(1): 1207, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36681694

ABSTRACT

Invasive species are a major threat for native ecosystems and organisms living within. They are reducing the biodiversity in invaded ecosystems, by outcompeting native species with e. g. novel substances. Invasive terrestrial plants can release allelochemicals, thereby reducing biodiversity due to the suppression of growth of native plants in invaded habitats. Aside from negative effects on plants, allelochemicals can affect other organisms such as mycorrhiza fungi and invertebrates in terrestrial ecosystems. When invasive plants grow in riparian zones, it is very likely that terrestrial borne allelochemicals can leach into the aquatic ecosystem. There, the often highly reactive compounds may not only elicit toxic effects to aquatic organisms, but they may also interfere with biotic interactions. Here we show that the allelochemical 2-methoxy-1,4-naphthoquinone (2-MNQ), produced by the ubiquitously occurring invasive terrestrial plant Impatiens glandulifera, interferes with the ability of Daphnia to defend itself against predators with morphological defences. Daphnia magna and Daphnia longicephala responded with morphological defences induced by chemical cues released by their corresponding predators, Triops cancriformis or Notonecta sp. However, predator cues in combination with 2-MNQ led to a reduction in the morphological defensive traits, body- and tail-spine length, in D. magna. In D. longicephala all tested inducible defensive traits were not significantly affected by 2-MNQ but indicate similar patterns, highlighting the importance to study different species to assess the risks for aquatic ecosystems. Since it is essential for Daphnia to adapt defences to the current predation risk, a maladaptation in defensive traits when simultaneously exposed to allelochemicals released by I. glandulifera, may therefore have knock-on effects on population dynamics across multiple trophic levels, as Daphnia is a key species in lentic ecosystems.


Subject(s)
Impatiens , Mycorrhizae , Animals , Daphnia , Ecosystem , Pheromones/pharmacology , Pheromones/chemistry
13.
Sci Total Environ ; 857(Pt 3): 159717, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302436

ABSTRACT

Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.


Subject(s)
Ecosystem , Trees , Trees/chemistry , Plant Leaves , Forests , Tea , Biodiversity , Soil/chemistry
14.
Glob Chang Biol ; 29(6): 1437-1450, 2023 03.
Article in English | MEDLINE | ID: mdl-36579623

ABSTRACT

Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch ß-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, ß-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the ß-diversity of different trophic levels, as well as the ß-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and ß-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.


Subject(s)
Ecosystem , Forests , Humans , Phylogeny , Biodiversity , Forestry
15.
BMC Ecol Evol ; 22(1): 138, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443667

ABSTRACT

BACKGROUND: Brood parasites can exert strong selection pressure on their hosts. Many brood parasites escape their detection by mimicking sensory cues of their hosts. However, there is little evidence whether or not the hosts are able to escape the parasites' mimicry by changing these cues. We addressed this question by analyzing cuticular hydrocarbon (CHC) profiles of Cerceris and Philanthus wasps and their brood parasites, cuckoo wasps mimicking the CHC profiles of their hosts. Some of these hosts use hydrocarbons to preserve their prey against fungal infestation and thus, they cannot significantly change their CHC composition in response to chemical mimicry by Hedychrum brood parasites. RESULTS: We found that the CHC overlap between brood parasites and their hosts was lower in case of host wasps not preserving their prey than in case of prey-preserving host wasps, whose CHC evolution is constrained. Furthermore, the CHC profiles in non-preserving host wasps is more strongly diversified in females than in males, thus in the sex that is chemically mimicked by brood parasites. CONCLUSION: Our results provide evidence for a chemical arms race between those hosts that are liberated from stabilizing selection on their chemical template and their parasites.


Subject(s)
Rhabdomyosarcoma, Alveolar , Wasps , Female , Male , Animals , Bees , Birds , Restraint, Physical , Research , Cues
16.
Sci Total Environ ; 838(Pt 3): 156387, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35660620

ABSTRACT

Terrestrial ecosystems are exposed to many anthropogenic pollutants. Non-target effects of pesticides and fertilizers have put agricultural intensification in the focus as a driver for biodiversity loss. However, other pollutants, such as heavy metals, particulate matter, or microplastic also enter the environment, e.g. via traffic and industrial activities in urban areas. As soil acts as a potential sink for such pollutants, soil invertebrates like earthworms may be particularly affected by them. Under natural conditions soil invertebrates will likely be exposed to combinations of pollutants simultaneously, which may result in stronger negative effects if pollutants act synergistically. Within this work we study how multiple pollutants affect the soil-dwelling, substrate feeding earthworm Eisenia fetida. We compared the effects of the single stressors, polystyrene microplastic fragments, polystyrene fibers, brake dust and carbon black, with the combined effect of these pollutants when applied as a mixture. Endpoints measured were survival, increase in body weight, reproductive fitness, and changes in three oxidative stress markers (glutathione S-transferase, catalase and malondialdehyde). We found that among single pollutant treatments, brake dust imposed the strongest negative effects on earthworms in all measured endpoints including increased mortality rates. Sub-lethal effects were found for all pollutants. Exposing earthworms to all four pollutants simultaneously led to effects on mortality and oxidative stress markers that were smaller than expected by the respective null models. These antagonistic effects are likely a result of the adsorption of toxic substances found in brake dust to the other pollutants. With this study we show that effects of combinations of pollutants cannot necessarily be predicted from their individual effects and that combined effects will likely depend on identity and concentration of the pollutants.


Subject(s)
Environmental Pollutants , Oligochaeta , Soil Pollutants , Animals , Dust , Ecosystem , Microplastics , Plastics/toxicity , Polystyrenes , Soil/chemistry , Soil Pollutants/analysis
17.
Conserv Biol ; 36(6): e13959, 2022 12.
Article in English | MEDLINE | ID: mdl-35638587

ABSTRACT

Red wood ants (RWAs) are a group of keystone species widespread in temperate and boreal forests of the Northern Hemisphere. Despite this, there is increasing evidence of local declines and extinctions. We reviewed the current protection status of RWAs throughout Europe and their International Union for the Conservation of Nature (IUCN) threat classification. Only some RWA species have been assessed at a global scale, and not all national red lists of the countries where RWAs are present include these species. Different assessment criteria, inventory approaches, and risk categories are used in different countries, and data deficiency is frequent. Legislative protection is even more complex, with some countries protecting RWAs implicitly together with the wildlife fauna and others explicitly protecting the whole group or particular species. This complexity often occurs within countries, for example, in Italy, where, outside of the Alps, only the introduced species are protected, whereas the native species, which are in decline, are not. Therefore, an international, coordinated framework is needed for the protection of RWAs. This first requires that the conservation target should be defined. Due to the similar morphology, complex taxonomy, and frequent hybridization, protecting the entire RWA group seems a more efficient strategy than protecting single species, although with a distinction between autochthonous and introduced species. Second, an update of the current distribution of RWA species is needed throughout Europe. Third, a protection law cannot be effective without the collaboration of forest managers, whose activity influences RWA habitat. Finally, RWA mounds offer a peculiar microhabitat, hosting a multitude of taxa, some of which are obligate myrmecophilous species on the IUCN Red List. Therefore, RWAs' role as umbrella species could facilitate their protection if they are considered not only as target species but also as providers of species-rich microhabitats.


Las hormigas rojas de la madera (HRM) conforman un grupo de especies clave con amplia distribución en los bosques templados y boreales del Hemisferio Norte. A pesar de lo anterior, cada vez hay más evidencia de su declinación y extinción local. Revisamos el estado actual de protección de las HRM en toda Europa y su clasificación en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN). Sólo se han evaluado algunas especies de HRM a escala mundial y no todas las listas rojas nacionales de los países con presencia de HRM incluyen a estas especies. Los diferentes países usan criterios de evaluación, estrategias de inventario y categorías de riesgo distintos, además de que la información deficiente es habitual. La protección legislativa es todavía más compleja pues algunos países protegen implícitamente a las HRM junto con la fauna silvestre y otros protegen explícitamente a todo el grupo o a una especie particular. Esta complejidad ocurre a menudo en los países (por ejemplo: Italia) en donde, fuera de los Alpes, sólo se protege a las especies introducidas, mientras a las especies nativas, que están declinando, no se les protege. Por lo tanto, se requiere un marco de trabajo internacional y coordinado para proteger a las HRM. Esto necesita primero que se defina el objetivo de conservación. Ya que las HRM tienen similitudes morfológicas, una taxonomía compleja e hibridación frecuente, la protección del grupo completo, con la distinción entre las especies autóctonas y las introducidas, parece ser una estrategia más eficiente que la protección de una sola especie. Segundo, se debe actualizar la distribución actual de las HRM en Europa. Tercero, una ley de protección no puede ser efectiva sin la colaboración de los gestores forestales, cuya actividad influye sobre el hábitat de las HRM Finalmente, los montículos de las HRM ofrecen un microhábitat peculiar pues hospedan a una multitud de taxones, algunos de los cuales son especies mirmecófilas obligadas presentes en la Lista Roja de la UICN. Así, el papel de las HRM como especie paraguas podría facilitar su protección si se les considera no sólo como especies diana sino también como proveedoras de microhábitats con riqueza de especies.


Subject(s)
Ants , Animals , Conservation of Natural Resources , Forests , Ecosystem , Europe
18.
Ecol Evol ; 12(4): e8781, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35414893

ABSTRACT

Invasive alien species are a major threat to ecosystems. Invasive terrestrial plants can produce allelochemicals which suppress native terrestrial biodiversity. However, it is not known if leached allelochemicals from invasive plants growing in riparian zones, such as Impatiens glandulifera, also affect freshwater ecosystems. We used mesocosms and laboratory experiments to test the impact of I. glandulifera on a simplified freshwater food web. Our mesocosm experiments show that leachate from I. glandulifera significantly reduced population growth rate of the water flea Daphnia magna and the green alga Acutodesmus obliquus, both keystone species of lakes and ponds. Laboratory experiments using the main allelochemical released by I. glandulifera, 2-methoxy-1,4-naphthoquinone, revealed negative fitness effects in D. magna and A. obliquus. Our findings show that allelochemicals from I. glandulifera not only reduce biodiversity in terrestrial habitats but also pose a threat to freshwater ecosystems, highlighting the necessity to incorporate cross-ecosystem effects in the risk assessment of invasive species.

19.
Ecotoxicology ; 31(2): 221-233, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34791607

ABSTRACT

The earthworm Eisenia fetida is a commonly used model organism for unspecific soil feeders in ecotoxicological studies. Its intestinal cells are the first to encounter possible pollutants co-ingested by the earthworm, which makes them prime candidates for studies of toxic effects of environmental pollutants on the cellular as compared to the organismic level. In this context, the aim of this study was to demonstrate the suitability of preparations of primary intestinal E. fetida cells for in vitro ecotoxicological studies. For this purpose, a suitable isolation and cultivation protocol was established. Cells were isolated directly from the intestine, maintaining >85% viability during subsequent cultivations (up to 144 h). Exposure to established pollutants and soil elutriates comprising silver nanoparticles and metal ions (Cu2+, Cd2+) induced a significant decrease in the metabolic activity of the cells. In case of microplastic particles (MP particles), namely 0.2, 0.5, 2.0, and 3.0 µm diameter polystyrene (PS) beads as well as 0.5 and 2.0 µm diameter polylactic acid (PLA) beads, no active uptake was observed. Slight positive as well as negative dose and size dependent effects on the metabolism were seen, which to some extent might correlate with effects on the organismic level.


Subject(s)
Metal Nanoparticles , Oligochaeta , Soil Pollutants , Animals , Intestines/chemistry , Metal Nanoparticles/toxicity , Plastics/metabolism , Plastics/pharmacology , Silver/metabolism , Soil , Soil Pollutants/analysis
20.
Nat Commun ; 12(1): 3918, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168127

ABSTRACT

Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Subject(s)
Biodiversity , Ecosystem , Plants , Soil Microbiology , Agriculture , Animals , Europe , Food Chain , Forests , Grassland , Herbivory , Insecta
SELECTION OF CITATIONS
SEARCH DETAIL
...