Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892347

ABSTRACT

V-set immunoglobulin domain-containing 4 (VSIG4) is a B7 family protein with known roles as a C3 fragment complement receptor involved in pathogen clearance and a negative regulator of T cell activation by an undetermined mechanism. VSIG4 expression is specific for tumor-associated and select tissue-resident macrophages. Increased expression of VSIG4 has been associated with worse survival in multiple cancer indications. Based upon computational analysis of transcript data across thousands of tumor and normal tissue samples, we hypothesized that VSIG4 has an important role in promoting M2-like immune suppressive macrophages and that targeting VSIG4 could relieve VSIG4-mediated macrophage suppression by repolarizing tumor-associated macrophages (TAMs) to an inflammatory phenotype. We have also observed a cancer-specific pattern of VSIG4 isoform distribution, implying a change in the functional regulation in cancer. Through a series of in vitro, in vivo, and ex vivo assays we demonstrate that anti-VSIG4 antibodies repolarize M2 macrophages and induce an immune response culminating in T cell activation. Anti-VSIG4 antibodies induce pro-inflammatory cytokines in M-CSF plus IL-10-driven human monocyte-derived M2c macrophages. Across patient-derived tumor samples from multiple tumor types, anti-VSIG4 treatment resulted in the upregulation of cytokines associated with TAM repolarization and T cell activation and chemokines involved in immune cell recruitment. VSIG4 blockade is also efficacious in a syngeneic mouse model as monotherapy as it enhances efficacy in combination with anti-PD-1, and the effect is dependent on the systemic availability of CD8+ T cells. Thus, VSIG4 represents a promising new target capable of triggering an anti-cancer response via multiple key immune mechanisms.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Animals , Humans , Mice , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Cell Line, Tumor , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Cytokines/metabolism , Female , Receptors, Complement
2.
Lancet ; 403(10427): 632-644, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38246194

ABSTRACT

BACKGROUND: Checkpoint inhibitors are standard adjuvant treatment for stage IIB-IV resected melanoma, but many patients recur. Our study aimed to evaluate whether mRNA-4157 (V940), a novel mRNA-based individualised neoantigen therapy, combined with pembrolizumab, improved recurrence-free survival and distant metastasis-free survival versus pembrolizumab monotherapy in resected high-risk melanoma. METHODS: We did an open-label, randomised, phase 2b, adjuvant study of mRNA-4157 plus pembrolizumab versus pembrolizumab monotherapy in patients, enrolled from sites in the USA and Australia, with completely resected high-risk cutaneous melanoma. Patients with completely resected melanoma (stage IIIB-IV) were assigned 2:1 to receive open-label mRNA-4157 plus pembrolizumab or pembrolizumab monotherapy. mRNA-4157 was administered intramuscularly (maximum nine doses) and pembrolizumab intravenously (maximum 18 doses) in 3-week cycles. The primary endpoint was recurrence-free survival in the intention-to-treat population. This ongoing trial is registered at ClinicalTrials.gov, NCT03897881. FINDINGS: From July 18, 2019, to Sept 30, 2021, 157 patients were assigned to mRNA-4157 plus pembrolizumab combination therapy (n=107) or pembrolizumab monotherapy (n=50); median follow-up was 23 months and 24 months, respectively. Recurrence-free survival was longer with combination versus monotherapy (hazard ratio [HR] for recurrence or death, 0·561 [95% CI 0·309-1·017]; two-sided p=0·053), with lower recurrence or death event rate (24 [22%] of 107 vs 20 [40%] of 50); 18-month recurrence-free survival was 79% (95% CI 69·0-85·6) versus 62% (46·9-74·3). Most treatment-related adverse events were grade 1-2. Grade ≥3 treatment-related adverse events occurred in 25% of patients in the combination group and 18% of patients in the monotherapy group, with no mRNA-4157-related grade 4-5 events. Immune-mediated adverse event frequency was similar for the combination (37 [36%]) and monotherapy (18 [36%]) groups. INTERPRETATION: Adjuvant mRNA-4157 plus pembrolizumab prolonged recurrence-free survival versus pembrolizumab monotherapy in patients with resected high-risk melanoma and showed a manageable safety profile. These results provide evidence that an mRNA-based individualised neoantigen therapy might be beneficial in the adjuvant setting. FUNDING: Moderna in collaboration with Merck Sharp & Dohme, a subsidiary of Merck & Co, Rahway, NJ, USA.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Adjuvants, Immunologic/therapeutic use , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/surgery , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/surgery
3.
Cancer Res Commun ; 3(10): 2182-2194, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37819238

ABSTRACT

The immune suppressive microenvironment is a major culprit for difficult-to-treat solid cancers. Particularly, inhibitory tumor-associated macrophages (TAM) define the resistant nature of the tumor milieu. To define tumor-enabling mechanisms of TAMs, we analyzed molecular clinical datasets correlating cell surface receptors with the TAM infiltrate. Though P-selectin glycoprotein ligand-1 (PSGL-1) is found on other immune cells and functions as an adhesion molecule, PSGL-1 is highly expressed on TAMs across multiple tumor types. siRNA-mediated knockdown and antibody-mediated inhibition revealed a role for PSGL-1 in maintaining an immune suppressed macrophage state. PSGL-1 knockdown or inhibition enhanced proinflammatory mediator release across assays and donors in vitro. In several syngeneic mouse models, PSGL-1 blockade alone and in combination with PD-1 blockade reduced tumor growth. Using a humanized tumor model, we observed the proinflammatory TAM switch following treatment with an anti-PSGL-1 antibody. In ex vivo patient-derived tumor cultures, a PSGL-1 blocking antibody increased expression of macrophage-derived proinflammatory cytokines, as well as IFNγ, indicative of T-cell activation. Our data demonstrate that PSGL-1 blockade reprograms TAMs, offering a new therapeutic avenue to patients not responding to T-cell immunotherapies, as well as patients with tumors devoid of T cells. SIGNIFICANCE: This work is a significant and actionable advance, as it offers a novel approach to treating patients with cancer who do not respond to T-cell checkpoint inhibitors, as well as to patients with tumors lacking T-cell infiltration. We expect that this mechanism will be applicable in multiple indications characterized by infiltration of TAMs.


Subject(s)
Membrane Glycoproteins , Tumor-Associated Macrophages , Mice , Animals , Humans , Tumor-Associated Macrophages/metabolism , Membrane Glycoproteins/genetics , Cytokines , Cell Adhesion Molecules
4.
Adv Biol (Weinh) ; 7(10): e2300047, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37083213

ABSTRACT

Macrophages are multifunctional cells that are employed by the tumor to further its growth and adaptation. While tumor-associated macrophages (TAMs) have widely diverse phenotypes, tumors coevolve with the ones that can promote tumorigenesis. Functionally, TAMs/myeloid cells constitute the largest negative influence on the tumor microenvironment and need to be reprogrammed in order to enable successful anti-tumor response in most tumors. It is predicted that successful TAM repolarization has the potential to become a staple of immuno-oncology across most indications.

5.
Mol Cancer Ther ; 16(11): 2586-2597, 2017 11.
Article in English | MEDLINE | ID: mdl-28835384

ABSTRACT

The EZH2 small-molecule inhibitor tazemetostat (EPZ-6438) is currently being evaluated in phase II clinical trials for the treatment of non-Hodgkin lymphoma (NHL). We have previously shown that EZH2 inhibitors display an antiproliferative effect in multiple preclinical models of NHL, and that models bearing gain-of-function mutations in EZH2 were consistently more sensitive to EZH2 inhibition than lymphomas with wild-type (WT) EZH2 Here, we demonstrate that cell lines bearing EZH2 mutations show a cytotoxic response, while cell lines with WT-EZH2 show a cytostatic response and only tumor growth inhibition without regression in a xenograft model. Previous work has demonstrated that cotreatment with tazemetostat and glucocorticoid receptor agonists lead to a synergistic antiproliferative effect in both mutant and wild-type backgrounds, which may provide clues to the mechanism of action of EZH2 inhibition in WT-EZH2 models. Multiple agents that inhibit the B-cell receptor pathway (e.g., ibrutinib) were found to have synergistic benefit when combined with tazemetostat in both mutant and WT-EZH2 backgrounds of diffuse large B-cell lymphomas (DLBCL). The relationship between B-cell activation and EZH2 inhibition is consistent with the proposed role of EZH2 in B-cell maturation. To further support this, we observe that cell lines treated with tazemetostat show an increase in the B-cell maturation regulator, PRDM1/BLIMP1, and gene signatures corresponding to more advanced stages of maturation. These findings suggest that EZH2 inhibition in both mutant and wild-type backgrounds leads to increased B-cell maturation and a greater dependence on B-cell activation signaling. Mol Cancer Ther; 16(11); 2586-97. ©2017 AACR.


Subject(s)
Benzamides/administration & dosage , Enhancer of Zeste Homolog 2 Protein/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Pyrazoles/administration & dosage , Pyridones/administration & dosage , Pyrimidines/administration & dosage , Adenine/analogs & derivatives , Animals , B-Lymphocytes/drug effects , Biphenyl Compounds , Cell Proliferation/drug effects , DNA Methylation/drug effects , Drug Synergism , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Morpholines , Mutation , Piperidines , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
6.
Mol Cancer Ther ; 16(5): 850-860, 2017 05.
Article in English | MEDLINE | ID: mdl-28292935

ABSTRACT

The SWI/SNF complex is a major regulator of gene expression and is increasingly thought to play an important role in human cancer, as evidenced by the high frequency of subunit mutations across virtually all cancer types. We previously reported that in preclinical models, malignant rhabdoid tumors, which are deficient in the SWI/SNF core component INI1 (SMARCB1), are selectively killed by inhibitors of the H3K27 histone methyltransferase EZH2. Given the demonstrated antagonistic activities of the SWI/SNF complex and the EZH2-containing PRC2 complex, we investigated whether additional cancers with SWI/SNF mutations are sensitive to selective EZH2 inhibition. It has been recently reported that ovarian cancers with dual loss of the redundant SWI/SNF components SMARCA4 and SMARCA2 are characteristic of a rare rhabdoid-like subtype known as small-cell carcinoma of the ovary hypercalcemic type (SCCOHT). Here, we provide evidence that a subset of commonly used ovarian carcinoma cell lines were misdiagnosed and instead were derived from a SCCOHT tumor. We also demonstrate that tazemetostat, a potent and selective EZH2 inhibitor currently in phase II clinical trials, induces potent antiproliferative and antitumor effects in SCCOHT cell lines and xenografts deficient in both SMARCA2 and SMARCA4. These results exemplify an additional class of rhabdoid-like tumors that are dependent on EZH2 activity for survival. Mol Cancer Ther; 16(5); 850-60. ©2017 AACR.


Subject(s)
Carcinoma, Small Cell/drug therapy , DNA Helicases/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Nuclear Proteins/genetics , Ovarian Neoplasms/drug therapy , Rhabdoid Tumor/drug therapy , Transcription Factors/genetics , Animals , Carcinoma, Small Cell/diagnosis , Carcinoma, Small Cell/genetics , Carcinoma, Small Cell/pathology , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , Diagnosis, Differential , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic/drug effects , Histone-Lysine N-Methyltransferase/genetics , Humans , Hypercalcemia/diagnosis , Hypercalcemia/drug therapy , Hypercalcemia/genetics , Hypercalcemia/pathology , Mice , Mutation , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Rhabdoid Tumor/diagnosis , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 15(6): 1155-62, 2016 06.
Article in English | MEDLINE | ID: mdl-26983881

ABSTRACT

Combination drug therapy is a widely used paradigm for managing numerous human malignancies. In cancer treatment, additive and/or synergistic drug combinations can convert weakly efficacious monotherapies into regimens that produce robust antitumor activity. This can be explained in part through pathway interdependencies that are critical for cancer cell proliferation and survival. However, identification of the various interdependencies is difficult due to the complex molecular circuitry that underlies tumor development and progression. Here, we present a high-throughput platform that allows for an unbiased identification of synergistic and efficacious drug combinations. In a screen of 22,737 experiments of 583 doublet combinations in 39 diverse cancer cell lines using a 4 by 4 dosing regimen, both well-known and novel synergistic and efficacious combinations were identified. Here, we present an example of one such novel combination, a Wee1 inhibitor (AZD1775) and an mTOR inhibitor (ridaforolimus), and demonstrate that the combination potently and synergistically inhibits cancer cell growth in vitro and in vivo This approach has identified novel combinations that would be difficult to reliably predict based purely on our current understanding of cancer cell biology. Mol Cancer Ther; 15(6); 1155-62. ©2016 AACR.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Drug Screening Assays, Antitumor/methods , High-Throughput Screening Assays/methods , Neoplasms, Experimental/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Humans , Mice , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidinones , Random Allocation , Sirolimus/administration & dosage , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Xenograft Model Antitumor Assays
8.
Mol Cancer Ther ; 12(8): 1442-52, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23699655

ABSTRACT

Inhibition of the DNA damage checkpoint kinase WEE1 potentiates genotoxic chemotherapies by abrogating cell-cycle arrest and proper DNA repair. However, WEE1 is also essential for unperturbed cell division in the absence of extrinsic insult. Here, we investigate the anticancer potential of a WEE1 inhibitor, independent of chemotherapy, and explore a possible cellular context underlying sensitivity to WEE1 inhibition. We show that MK-1775, a potent and selective ATP-competitive inhibitor of WEE1, is cytotoxic across a broad panel of tumor cell lines and induces DNA double-strand breaks. MK-1775-induced DNA damage occurs without added chemotherapy or radiation in S-phase cells and relies on active DNA replication. At tolerated doses, MK-1775 treatment leads to xenograft tumor growth inhibition or regression. To begin addressing potential response markers for MK-1775 monotherapy, we focused on PKMYT1, a kinase functionally related to WEE1. Knockdown of PKMYT1 lowers the EC(50) of MK-1775 by five-fold but has no effect on the cell-based response to other cytotoxic drugs. In addition, knockdown of PKMYT1 increases markers of DNA damage, γH2AX and pCHK1(S345), induced by MK-1775. In a post hoc analysis of 305 cell lines treated with MK-1775, we found that expression of PKMYT1 was below average in 73% of the 33 most sensitive cell lines. Our findings provide rationale for WEE1 inhibition as a potent anticancer therapy independent of a genotoxic partner and suggest that low PKMYT1 expression could serve as an enrichment biomarker for MK-1775 sensitivity.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/genetics , Female , Gene Knockdown Techniques , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Pyrimidinones , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
9.
Cancer Cell Int ; 12(1): 45, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23148684

ABSTRACT

BACKGROUND: Inhibition of kinases involved in the DNA damage response sensitizes cells to genotoxic agents by abrogating checkpoint-induced cell cycle arrest. CHK1 and WEE1 act in a pathway upstream of CDK1 to inhibit cell cycle progression in response to damaged DNA. Therapeutic targeting of either CHK1 or WEE1, in combination with chemotherapy, is under clinical evaluation. These studies examine the overlap and potential for synergy when CHK1 and WEE1 are inhibited in cancer cell models. METHODS: Small molecules MK-8776 and MK-1775 were used to selectively and potently inhibit CHK1 and WEE1, respectively. RESULTS: In vitro, the combination of MK-8776 and MK-1775 induces up to 50-fold more DNA damage than either MK-8776 or MK-1775 alone at a fixed concentration. This requires aberrant cyclin-dependent kinase activity but does not appear to be dependent on p53 status alone. Furthermore, DNA damage takes place primarily in S-phase cells, implying disrupted DNA replication. When dosed together, the combination of MK-8776 and MK-1775 induced more intense and more durable DNA damage as well as anti-tumor efficacy than either MK-8776 or MK-1775 dosed alone. DNA damage induced by the combination was detected in up to 40% of cells in a treated xenograft tumor model. CONCLUSIONS: These results highlight the roles of WEE1 and CHK1 in maintaining genomic integrity. Importantly, the strong synergy observed upon inhibition of both kinases suggests unique yet complimentary anti-tumor effects of WEE1 and CHK1 inhibition. This demonstration of DNA double strand breaks in the absence of a DNA damaging chemotherapeutic provides preclinical rationale for combining WEE1 and CHK1 inhibitors as a cancer treatment regimen.

10.
Sci Transl Med ; 2(43): 43ra55, 2010 Aug 04.
Article in English | MEDLINE | ID: mdl-20686178

ABSTRACT

Although we have made great progress in understanding the complex genetic alterations that underlie human cancer, it has proven difficult to identify which molecularly targeted therapeutics will benefit which patients. Drug-specific modulation of oncogenic signaling pathways in specific patient subpopulations can predict responsiveness to targeted therapy. Here, we report a pathway-based phosphoprofiling approach to identify and quantify clinically relevant, drug-specific biomarkers for phosphatidylinositol 3-kinase (PI3K) pathway inhibitors that target AKT, phosphoinositide-dependent kinase 1 (PDK1), and PI3K-mammalian target of rapamycin (mTOR). We quantified 375 nonredundant PI3K pathway-relevant phosphopeptides, all containing AKT, PDK1, or mitogen-activated protein kinase substrate recognition motifs. Of these phosphopeptides, 71 were drug-regulated, 11 of them by all three inhibitors. Drug-modulated phosphoproteins were enriched for involvement in cytoskeletal reorganization (filamin, stathmin, dynamin, PAK4, and PTPN14), vesicle transport (LARP1, VPS13D, and SLC20A1), and protein translation (S6RP and PRAS40). We then generated phosphospecific antibodies against selected, drug-regulated phosphorylation sites that would be suitable as biomarker tools for PI3K pathway inhibitors. As proof of concept, we show clinical translation feasibility for an antibody against phospho-PRAS40(Thr246). Evaluation of binding of this antibody in human cancer cell lines, a PTEN (phosphatase and tensin homolog deleted from chromosome 10)-deficient mouse prostate tumor model, and triple-negative breast tumor tissues showed that phospho-PRAS40(Thr246) positively correlates with PI3K pathway activation and predicts AKT inhibitor sensitivity. In contrast to phosphorylation of AKT(Thr308), the phospho-PRAS40(Thr246) epitope is highly stable in tissue samples and thus is ideal for immunohistochemistry. In summary, our study illustrates a rational approach for discovery of drug-specific biomarkers toward development of patient-tailored treatments.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Precision Medicine , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing , Animals , Basophils/drug effects , Basophils/enzymology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Computational Biology , Cytoskeletal Proteins/metabolism , Enzyme Activation/drug effects , Epitopes/immunology , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Neoplasms/enzymology , Neoplasms/pathology , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphoproteins/metabolism , Phosphoserine/metabolism , Protein Stability/drug effects , Protein Transport/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Substrate Specificity/drug effects , Up-Regulation/drug effects
11.
BMC Med Genomics ; 3: 26, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-20591134

ABSTRACT

BACKGROUND: Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. METHODS: We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. RESULTS: The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. CONCLUSIONS: These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.


Subject(s)
Gene Expression Profiling , Neoplasms/metabolism , Phosphoinositide-3 Kinase Inhibitors , Signal Transduction/drug effects , ras Proteins/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cetuximab , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Databases, Genetic , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins p21(ras) , RNA Interference , RNA, Small Interfering/metabolism , ras Proteins/antagonists & inhibitors , ras Proteins/genetics
12.
Proc Natl Acad Sci U S A ; 105(11): 4323-8, 2008 Mar 18.
Article in English | MEDLINE | ID: mdl-18326631

ABSTRACT

By analyzing, in parallel, large literature-derived and high-throughput experimental datasets we investigate genes harboring human inherited disease mutations in the context of molecular interaction networks. Our results demonstrate that network properties influence the likelihood and phenotypic consequences of disease mutations. Genes with intermediate connectivities have the highest probability of harboring germ-line disease mutations, suggesting that disease genes tend to occupy an intermediate niche in terms of their physiological and cellular importance. Our analysis of tissue expression profiles supports this view. We show that disease mutations are less likely to occur in essential genes compared with all human genes. Disease genes display significant functional clustering in the analyzed molecular network. For about one-third of known disorders with two or more associated genes we find physical clusters of genes with the same phenotype. These clusters are likely to represent disorder-specific functional modules and suggest a framework for identifying yet-undiscovered disease genes.


Subject(s)
Gene Regulatory Networks , Genetic Predisposition to Disease/genetics , Gene Expression Regulation/genetics , Humans , Multigene Family , Mutation/genetics , Phenotype , Probability
13.
BMC Neurosci ; 7: 53, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16813648

ABSTRACT

BACKGROUND: The striatal complex is the major target of dopamine action in the CNS. There, medium-spiny GABAergic neurons, which constitute about 95% of the neurons in the area, form a mutually inhibitory synaptic network that is modulated by dopamine. When put in culture, the neurons reestablish this network. In particular, they make autaptic connections that provide access to single, identified medium-spiny to medium-spiny neuron synaptic connections. RESULTS: We examined medium-spiny neuron autaptic connections in postnatal cultures from the nucleus accumbens, the ventral part of the striatal complex. These connections were subject to presynaptic dopamine modulation. D1-like receptors mediated either inhibition or facilitation, while D2-like receptors predominantly mediated inhibition. Many connections showed both D1 and D2 modulation, consistent with a significant functional colocalization of D1 and D2-like receptors at presynaptic sites. These same connections were subject to GABAA, GABAB, norepinephrine and serotonin modulation, revealing a multiplicity of modulatory autoreceptors and heteroreceptors on individual varicosities. In some instances, autaptic connections had two components that were differentially modulated by dopamine agonists, suggesting that dopamine receptors could be distributed heterogeneously on the presynaptic varicosities making up a single synaptic (i.e. autaptic) connection. CONCLUSION: Differential trafficking of dopamine receptors to different presynaptic varicosities could explain the many controversial studies reporting widely varying degrees of dopamine receptor colocalization in medium-spiny neurons, as well as more generally the diversity of dopamine actions in target areas. Longer-term changes in the modulatory actions of dopamine in the striatal complex could be due to plasticity in the presynaptic distribution of dopamine receptors on medium-spiny neuron varicosities.


Subject(s)
Dopamine/metabolism , Nucleus Accumbens/metabolism , Presynaptic Terminals/metabolism , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Cells, Cultured , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Dopamine/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , GABA Agonists/pharmacology , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neural Pathways/drug effects , Neural Pathways/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Nucleus Accumbens/cytology , Nucleus Accumbens/drug effects , Presynaptic Terminals/drug effects , Protein Transport/drug effects , Protein Transport/physiology , Pyridinium Compounds , Quaternary Ammonium Compounds , Rats , Rats, Sprague-Dawley , Receptor Aggregation/drug effects , Receptor Aggregation/physiology , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/metabolism , Receptors, GABA/drug effects , Receptors, GABA/metabolism , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...