Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798593

ABSTRACT

Acinetobacter baumannii causes life-threatening infections that are becoming difficult to treat due to increasing rates of multi-drug resistance (MDR) among clinical isolates. This has led the World Health Organization and the CDC to categorize MDR A. baumannii as a top priority for the research and development of new antibiotics. Colistin is the last-resort antibiotic to treat carbapenem-resistant A. baumannii . Not surprisingly, reintroduction of colistin has resulted in the emergence of colistin-resistant strains. Diclofenac is a nonsteroidal anti-inflammatory drug used to treat pain and inflammation associated with arthritis. In this work, we show that diclofenac sensitizes colistin-resistant A. baumannii clinical strains to colistin, in vitro and in a murine model of pneumonia. Diclofenac also reduced the colistin MIC of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates. Transcriptomic and proteomic analyses revealed an upregulation of oxidative stress-related genes and downregulation of type IV pili induced by the combination treatment. Notably, the concentrations of colistin and diclofenac effective in the murine model were substantially lower than those determined in vitro , implying a stronger synergistic effect in vivo compared to in vitro . A pilA mutant strain, lacking the primary component of the type IV pili, became sensitive to colistin in the absence of diclofenac. This suggest that the downregulation of type IV pili is key for the synergistic activity of these drugs in vivo and indicates that colistin and diclofenac exert an anti-virulence effect. Together, these results suggest that the diclofenac can be repurposed with colistin to treat MDR A. baumannii .

2.
Proc Natl Acad Sci U S A ; 121(10): e2321910121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38422018

ABSTRACT

Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.


Subject(s)
Bacteroides thetaiotaomicron , Humans , Bacteroides thetaiotaomicron/genetics , Sigma Factor , Phylogeny
3.
mBio ; 14(5): e0141623, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37589464

ABSTRACT

IMPORTANCE: As deficiencies in tRNA modifications have been linked to human diseases such as cancer and diabetes, much research has focused on the modifications' impacts on translational regulation in eukaryotes. However, the significance of tRNA modifications in bacterial physiology remains largely unexplored. In this paper, we demonstrate that the m7G tRNA methyltransferase TrmB is crucial for a top-priority pathogen, Acinetobacter baumannii, to respond to stressors encountered during infection, including oxidative stress, low pH, and iron deprivation. We show that loss of TrmB dramatically attenuates a murine pulmonary infection. Given the current efforts to use another tRNA methyltransferase, TrmD, as an antimicrobial therapeutic target, we propose that TrmB, and other tRNA methyltransferases, may also be viable options for drug development to combat multidrug-resistant A. baumannii.


Subject(s)
Acinetobacter baumannii , Pneumonia , Animals , Humans , Mice , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/pathogenicity , Drug Resistance, Multiple, Bacterial/genetics , Oxidative Stress , Pneumonia/microbiology , Pneumonia/pathology , RNA, Transfer/genetics , RNA, Transfer/metabolism , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
4.
bioRxiv ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37503209

ABSTRACT

Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are at least partially mediated by O uter M embrane V esicles (OMVs). In this work, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron ( Bt ). Our screening led us to the identification of a novel family of D ual M embrane-spanning A nti-sigma factors (Dma), which regulate OMV biogenesis in Bt . We employed molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, results in hypervesiculation by modulating the expression of NigD1, which belongs to a family of uncharacterized proteins found throughout Bacteroidota. Dma1 has an unprecedented domain organization: it contains a C-terminal ß-barrel embedded in the OM; its N-terminal domain interacts with its cognate sigma factor in the cytoplasm, and both domains are tethered via an intrinsically disordered region that traverses the periplasm. Phylogenetic analyses reveal that the Dma family is a unique feature of Bacteroidota. This study provides the first mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.

5.
Microbiology (Reading) ; 169(6)2023 06.
Article in English | MEDLINE | ID: mdl-37289493

ABSTRACT

Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that persists in the hospital environment and causes various clinical infections, primarily affecting immunocompromised patients. A. baumannii has evolved a wide range of mechanisms to compete with neighbouring bacteria. One such competition strategy depends on small secreted peptides called microcins, which exert antimicrobial effects in a contact-independent manner. Here, we report that A. baumannii ATCC 17978 (AB17978) encodes the class II microcin 17 978 (Mcc17978) with antimicrobial activity against closely related Acinetobacter, and surprisingly, also Escherichia coli strains. We identified the genetic locus encoding the Mcc17978 system in AB17978. Using classical bacterial genetic approaches, we determined that the molecular receptor of Mcc17978 in E. coli is the iron-catecholate transporter Fiu, and in Acinetobacter is Fiu's homolog, PiuA. In bacteria, the Ferric uptake regulator (Fur) positively regulates siderophore systems and microcin systems under iron-deprived environments. We found that the Mcc17978 system is upregulated under low-iron conditions commonly found in the host environment and identified a putative Fur binding site upstream of the mcc17978 gene. When we tested the antimicrobial activity of Mcc17978 under different levels of iron availability, we observed that low iron levels not only triggered transcriptional induction of the microcin, but also led to enhanced microcin activity. Taken together, our findings suggest that A. baumannii may utilize microcins to compete with other microbes for resources during infection.


Subject(s)
Acinetobacter baumannii , Anti-Infective Agents , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Iron/metabolism , Anti-Infective Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
6.
PLoS Pathog ; 19(6): e1011173, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37294840

ABSTRACT

Bacterial pneumonia is a common infection of the lower respiratory tract that can afflict patients of all ages. Multidrug-resistant strains of Acinetobacter baumannii are increasingly responsible for causing nosocomial pneumonias, thus posing an urgent threat. Alveolar macrophages play a critical role in overcoming respiratory infections caused by this pathogen. Recently, we and others have shown that new clinical isolates of A. baumannii, but not the common lab strain ATCC 19606 (19606), can persist and replicate in macrophages within spacious vacuoles that we called Acinetobacter Containing Vacuoles (ACV). In this work, we demonstrate that the modern A. baumannii clinical isolate 398, but not the lab strain 19606, can infect alveolar macrophages and produce ACVs in vivo in a murine pneumonia model. Both strains initially interact with the macrophage endocytic pathway, as indicated by EEA1 and LAMP1 markers; however, the fate of these strains diverges at a later stage. While 19606 is eliminated in an autophagy pathway, 398 replicates in ACVs and are not degraded. We show that 398 reverts the natural acidification of the phagosome by secreting large amounts of ammonia, a by-product of amino acid catabolism. We propose that this ability to survive within macrophages may be critical for the persistence of clinical A. baumannii isolates in the lung during a respiratory infection.


Subject(s)
Acinetobacter baumannii , Pneumonia, Bacterial , Respiratory Tract Infections , Humans , Animals , Mice , Vacuoles , Lung , Respiratory Tract Infections/microbiology , Hydrogen-Ion Concentration , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
7.
Proc Natl Acad Sci U S A ; 120(27): e2306314120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364113

ABSTRACT

Extracellular vesicles are produced in all three domains of life, and their biogenesis has common ancient origins in eukaryotes and archaea. Although bacterial vesicles were discovered several decades ago and multiple roles have been attributed to them, no mechanism has been established for vesicles biogenesis in bacteria. For this reason, there is a significant level of skepticism about the biological relevance of bacterial vesicles. Bacteroides thetaiotaomicron (Bt), a prominent member of the human intestinal microbiota, produces significant amounts of outer membrane vesicles (OMVs) which have been proposed to play key physiological roles. Here, we employed a dual marker system, consisting of outer membrane- and OMV-specific markers fused to fluorescent proteins to visualize OMV biogenesis by time-lapse microscopy. Furthermore, we performed comparative proteomic analyses to show that, in Bt, the OMV cargo is adapted for the optimal utilization of different polysaccharides. We also show that a negatively charged N-terminal motif acts as a signal for protein sorting into OMVs irrespective of the nutrient availability. Our results demonstrate that OMV production is the result of a highly regulated process in Bt.


Subject(s)
Bacteroides thetaiotaomicron , Extracellular Vesicles , Humans , Proteomics , Extracellular Vesicles/metabolism , Bacteroides thetaiotaomicron/metabolism , Diet , Polysaccharides/metabolism , Bacterial Outer Membrane Proteins/metabolism
8.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066189

ABSTRACT

Extracellular vesicles (EV) are produced in all three domains of life, and their biogenesis have common ancient origins in eukaryotes and archaea. Although bacterial vesicles were discovered several decades ago and multiple roles have been attributed to them, no mechanism has been established for vesicles biogenesis in bacteria. For this reason, there is a significant level of skepticism about the biological relevance of bacterial vesicles. In Bacteroides thetaiotaomicron ( Bt ), a prominent member of the human intestinal microbiota, outer membrane vesicles (OMVs) have been proposed to play key physiological roles. By employing outer membrane- and OMV-specific markers fused to fluorescent proteins we visualized OMV biogenesis in live-cells. We performed comparative proteomic analyses to demonstrate that Bt actively tailors its vesicle cargo to optimize the breakdown of diet- and host-derived complex glycans. Surprisingly, our data suggests that OMV are not employed for mucin degradation. We also show that, in Bt , a negatively-charged N-terminal motif acts as a signal for protein sorting into OMVs irrespective of the nutrient availability. We conclude that OMVs are the result of an exquisitely orchestrated mechanism. This work lays the foundation for further investigations into the physiological relevance of OMVs and their roles in gut homeostasis. Furthermore, our work constitutes a roadmap to guide EV biogenesis research in other bacteria.

9.
Biochemistry ; 62(6): 1160-1180, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36880942

ABSTRACT

The anaerobic bacteria of the Bacteroides fragilis group including Bacteroides thetaiotaomicron, B. fragilis, Bacteroides vulgatus, and Bacteroides ovatus in genus Bacteroides are among the most commonly found human gut microbiota. They are generally commensal but are also opportunistic pathogens. Both the inner and outer membranes of the Bacteroides cell envelope contain abundant lipids with diversified structures, and dissection of the lipid composition of the inner and outer membrane fractions is important for understanding the biogenesis of this multilaminate wall structure. Here, we describe mass spectrometry-based approaches to delineate in detail the lipidome of the membrane and the outer membrane vesicle of the bacteria cells. We identified 15 lipid class/subclasses (>100 molecular species), including sphingolipid families [dihydroceramide (DHC), glycylseryl (GS) DHC, DHC-phosphoinositolphosphoryl-DHC (DHC-PIP-DHC), ethanolamine phosphorylceramide, inositol phosphorylceramide (IPC), serine phosphorylceramide, ceramide-1-phosphate, and glycosyl ceramide], phospholipids [phosphatidylethanolamine, phosphatidylinositol (PI), and phosphatidylserine], peptide lipids (GS-, S-, and G-lipids) and cholesterol sulfate, of which several have not been reported previously, or have similar structures to those found in Porphyromonas gingivalis, the periodontopathic bacterium in oral microbiota. The new DHC-PIPs-DHC lipid family is found only in B. vulgatus, which, however, lacks the PI lipid family. The galactosyl ceramide family is exclusively present in B. fragilis, which nevertheless lacks IPC and PI lipids. The lipidomes as revealed in this study demonstrate the lipid diversity among the various strains and the utility of multiple-stage mass spectrometry (MSn) with high-resolution mass spectrometry in the structural elucidation of complex lipids.


Subject(s)
Lipidomics , Sphingolipids , Humans , Bacteroides , Mass Spectrometry , Ceramides , Bacteroides fragilis
10.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778331

ABSTRACT

Bacterial pneumonia is a common infection of the lower respiratory tract that can afflict patients of all ages. Multidrug-resistant strains of Acinetobacter baumannii are increasingly responsible for causing nosocomial pneumonias, thus posing an urgent threat. Alveolar macrophages play a critical role in overcoming respiratory infections caused by this pathogen. Recently, we and others have shown that new clinical isolates of A. baumannii , but not the common lab strain ATCC 19606 (19606), can persist and replicate in macrophages within spacious vacuoles that we called A cinetobacter C ontaining V acuoles (ACV). In this work, we demonstrate that the modern A. baumannii clinical isolate 398, but not the lab strain 19606, can infect alveolar macrophages and produce ACVs in vivo in a murine pneumonia model. Both strains initially interact with the alveolar macrophage endocytic pathway, as indicated by EEA1 and LAMP1 markers; however, the fate of these strains diverges at a later stage. While 19606 is eliminated in an autophagy pathway, 398 replicates in ACVs and are not degraded. We show that 398 reverts the natural acidification of the phagosome by secreting large amounts of ammonia, a by-product of amino acid catabolism. We propose that this ability to survive within macrophages may be critical for the persistence of clinical A. baumannii isolates in the lung during a respiratory infection.

11.
Proc Natl Acad Sci U S A ; 120(4): e2212694120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36652481

ABSTRACT

Multidrug-resistant Acinetobacter baumannii infections are an urgent clinical problem and can cause difficult-to-treat nosocomial infections. During such infections, like catheter-associated urinary tract infections (CAUTI), A. baumannii rely on adhesive, extracellular fibers, called chaperone-usher pathway (CUP) pili for critical binding interactions. The A. baumannii uropathogenic strain, UPAB1, and the pan-European subclone II isolate, ACICU, use the CUP pili Abp1 and Abp2 (previously termed Cup and Prp, respectively) in tandem to establish CAUTIs, specifically to facilitate bacterial adherence and biofilm formation on the implanted catheter. Abp1 and Abp2 pili are tipped with two domain tip adhesins, Abp1D and Abp2D, respectively. We discovered that both adhesins bind fibrinogen, a critical host wound response protein that is released into the bladder upon catheterization and is subsequently deposited on the catheter. The crystal structures of the Abp1D and Abp2D receptor-binding domains were determined and revealed that they both contain a large, distally oriented pocket, which mediates binding to fibrinogen and other glycoproteins. Genetic, biochemical, and biophysical studies revealed that interactions with host proteins are governed by several critical residues in and along the edge of the binding pocket, one of which regulates the structural stability of an anterior loop motif. K34, located outside of the pocket but interacting with the anterior loop, also regulates the binding affinity of the protein. This study illuminates the mechanistic basis of the critical fibrinogen-coated catheter colonization step in A. baumannii CAUTI pathogenesis.


Subject(s)
Acinetobacter baumannii , Urinary Tract Infections , Humans , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Urinary Tract Infections/microbiology , Catheters , Acinetobacter baumannii/genetics , Fibrinogen/metabolism
12.
Sci Transl Med ; 15(678): eabn8134, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36630484

ABSTRACT

The antibiotic-resistant bacterium Acinetobacter baumannii is a leading cause of hospital-associated infections. Despite surveillance and infection control efforts, new A. baumannii strains are regularly isolated from health care facilities worldwide. In a mouse model of urinary tract infection, we found that mice infected with A. baumannii displayed high bacterial burdens in urine for several weeks. Two months after the resolution of A. baumannii infection, inserting a catheter into the bladder of mice with resolved infection led to the resurgence of a same-strain urinary tract infection in ~53% of the mice within 24 hours. We identified intracellular A. baumannii bacteria in the bladder epithelial cells of mice with resolved infection, which we propose could act as a host reservoir that was activated upon insertion of a catheter, leading to a resurgent secondary infection.


Subject(s)
Acinetobacter baumannii , Cross Infection , Urinary Tract Infections , Animals , Mice , Urinary Bladder , Catheterization , Urinary Tract Infections/microbiology , Anti-Bacterial Agents/pharmacology , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial
13.
Vaccine ; 40(42): 6107-6113, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36115800

ABSTRACT

Capsular polysaccharides (CPSs), with which most pathogenic bacterial surfaces are decorated, have been used as the main components of glycoconjugate vaccines against bacterial diseases in clinical practice worldwide. Pneumococcal conjugate vaccines (PCVs) are administered globally to prevent invasive pneumococcal disease (IPD). While PCVs have played important roles in controlling IPD in all age groups, their empirical, and labor-intensive chemical conjugation yield poorly characterized, heterogeneous, and variably immunogenic vaccines, with poor immune responses in high-risk populations such as the elderly and patients with weak immune systems. We previously developed a method that bypasses the dependency of chemical conjugation and instead exploits prokaryotic glycosylation systems to produce pneumococcal conjugate vaccines. The bioconjugation platform relies on a conjugating enzyme to transfer a bacterial polysaccharide to an engineered carrier protein all within the lab safe bacterium E. coli. In these studies, we demonstrate that a serotype 8 pneumococcal bioconjugate vaccine is highly immunogenic and elicits functionally protective anti-serotype 8 antibody responses. Specifically, using multiple models we show that mice immunized with multiple doses of a serotype 8 bioconjugate vaccine elicit antibody responses that mediate opsonophagocytic killing, protect mice from systemic infection, and decrease the ability of serotype 8 pneumococci to colonize the nasopharynx and disseminate. Collectively, these studies demonstrate the utility of bioconjugation to produce efficacious pneumococcal conjugate vaccines.


Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Animals , Antibodies, Bacterial , Carrier Proteins , Escherichia coli , Mice , Polysaccharides, Bacterial , Vaccines, Conjugate
14.
PLoS Genet ; 18(6): e1010020, 2022 06.
Article in English | MEDLINE | ID: mdl-35653398

ABSTRACT

Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies.


Subject(s)
Acinetobacter Infections , Acinetobacter calcoaceticus , Acinetobacter Infections/genetics , Acinetobacter Infections/microbiology , Acinetobacter calcoaceticus/genetics , Carbon , Humans , Multigene Family/genetics , Phylogeny , Virulence
15.
mBio ; 13(3): e0025822, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35638734

ABSTRACT

Acinetobacter baumannii is an opportunistic pathogen of growing concern, as isolates are commonly multidrug resistant. While A. baumannii is most frequently associated with pulmonary infections, a significant proportion of clinical isolates come from urinary sources, highlighting its uropathogenic potential. The type II secretion system (T2SS) of commonly used model Acinetobacter strains is important for virulence in various animal models, but the potential role of the T2SS in urinary tract infection (UTI) remains unknown. Here, we used a catheter-associated UTI (CAUTI) model to demonstrate that a modern urinary isolate, UPAB1, requires the T2SS for full virulence. A proteomic screen to identify putative UPAB1 T2SS effectors revealed an uncharacterized lipoprotein with structural similarity to the intimin-invasin family, which serve as type V secretion system (T5SS) adhesins required for the pathogenesis of several bacteria. This protein, designated InvL, lacked the ß-barrel domain associated with T5SSs but was confirmed to require the T2SS for both surface localization and secretion. This makes InvL the first identified T2SS effector belonging to the intimin-invasin family. InvL was confirmed to be an adhesin, as the protein bound to extracellular matrix components and mediated adhesion to urinary tract cell lines in vitro. Additionally, the invL mutant was attenuated in the CAUTI model, indicating a role in Acinetobacter uropathogenesis. Finally, bioinformatic analyses revealed that InvL is present in nearly all clinical isolates belonging to international clone 2, a lineage of significant clinical importance. In all, we conclude that the T2SS substrate InvL is an adhesin required for A. baumannii uropathogenesis. IMPORTANCE While pathogenic Acinetobacter can cause various infections, we recently found that 20% of clinical isolates come from urinary sources. Despite the clinical relevance of Acinetobacter as a uropathogen, few virulence factors involved in urinary tract colonization have been defined. Here, we identify a novel type II secretion system effector, InvL, which is required for full uropathogenesis by a modern urinary isolate. Although InvL has predicted structural similarity to the intimin-invasin family of autotransporter adhesins, InvL is predicted to be anchored to the membrane as a lipoprotein. Similar to other invasin homologs, however, we demonstrate that InvL is a bona fide adhesin capable of binding extracellular matrix components and mediating adhesion to urinary tract cell lines. In all, this work establishes InvL as an adhesin important for Acinetobacter's urinary tract virulence and represents the first report of a type II secretion system effector belonging to the intimin-invasin family.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Type II Secretion Systems , Urinary Tract Infections , Acinetobacter Infections/microbiology , Acinetobacter baumannii/metabolism , Adhesins, Bacterial/metabolism , Animals , Proteomics , Type II Secretion Systems/genetics , Type II Secretion Systems/metabolism , Type V Secretion Systems/genetics , Type V Secretion Systems/metabolism
16.
mBio ; 13(3): e0186321, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35467424

ABSTRACT

The opportunistic pathogen Acinetobacter baumannii is responsible for a wide range of infections that are becoming increasingly difficult to treat due to extremely high rates of multidrug resistance. Acinetobacter's pathogenic potential is thought to rely on a "persist and resist" strategy that facilitates its remarkable ability to survive under a variety of harsh conditions. The paa operon is involved in the catabolism of phenylacetic acid (PAA), an intermediate in phenylalanine degradation, and is the most differentially regulated pathway under many environmental conditions. We found that, under subinhibitory concentrations of antibiotics, A. baumannii upregulates expression of the paa operon while simultaneously repressing chaperone-usher Csu pilus expression and biofilm formation. These phenotypes are reverted either by exogenous addition of PAA and its nonmetabolizable derivative 4-fluoro-PAA or by a mutation that blocks PAA degradation. Interference with PAA degradation increases susceptibility to antibiotics and hydrogen peroxide treatment. Transcriptomic and proteomic analyses identified a subset of genes and proteins whose expression is affected by addition of PAA or disruption of the paa pathway. Finally, we demonstrated that blocking PAA catabolism results in attenuated virulence in a murine catheter-associated urinary tract infection (CAUTI) model. We conclude that the paa operon is part of a regulatory network that responds to antibiotic and oxidative stress and is important for virulence. PAA has known regulatory functions in plants, and our experiments suggest that PAA is a cross-kingdom signaling molecule. Interference with this pathway may lead, in the future, to novel therapeutic strategies against A. baumannii infections. IMPORTANCE Acinetobacter baumannii causes a wide range of infections that are difficult to treat due to increasing rates of multidrug resistance; however, the mechanisms that this pathogen uses to respond to stress are poorly understood. Here, we describe a new mechanism of stress signaling in Acinetobacter that is mediated by the metabolite phenylacetic acid (PAA). We found that disrupting PAA catabolism interfered with A. baumannii's ability to adapt to stress, leading to decreased antibiotic tolerance and hydrogen peroxide resistance. We propose that investigating this stress response could lead to the development of novel therapeutics. In fact, PAA derivatives constitute a group of FDA-approved nonsteroidal anti-inflammatory drugs that could potentially be repurposed as antivirulence therapies to target multidrug-resistant Acinetobacter infections.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Biofilms , Drug Resistance, Multiple, Bacterial , Hydrogen Peroxide/metabolism , Mice , Oxidative Stress , Phenylacetates , Proteomics
17.
Microbiol Spectr ; 10(1): e0063421, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35080445

ABSTRACT

Approximately one-third of the human colonic microbiome is formed by bacteria from the genus Bacteroides. These bacteria produce a large amount of uniformly sized outer membrane vesicles (OMVs), which are equipped with hydrolytic enzymes that play a role in the degradation of diet- and host-derived glycans. In this work, we characterize the lipid composition of membranes and OMVs from Bacteroides thetaiotaomicron VPI-5482. Liquid chromatography-mass spectrometry (LC-MS) analysis indicated that OMVs carry sphingolipids, glycerophospholipids, and serine-dipeptide lipids. Sphingolipid species represent more than 50% of the total lipid content of OMVs. The most abundant sphingolipids in OMVs are ethanolamine phosphoceramide (EPC) and inositol phosphoceramide (IPC). Bioinformatics analysis allowed the identification of the BT1522-1526 operon putatively involved in IPC synthesis. Mutagenesis studies revealed that BT1522-1526 is essential for the synthesis of phosphatidylinositol (PI) and IPC, confirming the role of this operon in the biosynthesis of IPC. BT1522-1526 mutant strains lacking IPC produced OMVs that were indistinguishable from the wild-type strain, indicating that IPC sphingolipid species are not involved in OMV biogenesis. Given the known role of sphingolipids in immunomodulation, we suggest that OMVs may act as long-distance vehicles for the delivery of sphingolipids in the human gut. IMPORTANCE Sphingolipids are essential membrane lipid components found in eukaryotes that are also involved in cell signaling processes. Although rare in bacteria, sphingolipids are produced by members of the phylum Bacteroidetes, human gut commensals. Here, we determined that OMVs carry sphingolipids and other lipids of known signaling function. Our results demonstrate that the BT1522-1526 operon is required for IPC biosynthesis in B. thetaiotaomicron.


Subject(s)
Bacteroides thetaiotaomicron/metabolism , Ceramides/biosynthesis , Inositol/metabolism , Transport Vesicles/metabolism , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides thetaiotaomicron/genetics , Biosynthetic Pathways , Ceramides/chemistry , Glycerophospholipids/chemistry , Glycerophospholipids/metabolism , Lipidomics , Mass Spectrometry , Operon , Sphingolipids/chemistry , Sphingolipids/metabolism , Transport Vesicles/chemistry , Transport Vesicles/genetics
18.
ACS Infect Dis ; 7(11): 3111-3123, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34633812

ABSTRACT

Group B Streptococcus (GBS) is a leading cause of neonatal infections and invasive diseases in nonpregnant adults worldwide. Developing a protective conjugate vaccine targeting the capsule of GBS has been pursued for more than 30 years; however, it has yet to yield a licensed product. In this study, we present a novel bioconjugation platform for producing a prototype multivalent GBS conjugate vaccine and its subsequent analytical and immunological characterizations. Using a glycoengineering strategy, we generated strains of Escherichia coli that recombinantly express the type Ia, type Ib, and type III GBS capsular polysaccharides. We then combined the type Ia-, Ib-, and III-capsule-expressing E. coli strains with an engineered Pseudomonas aeruginosa exotoxin A (EPA) carrier protein and the PglS oligosaccharyltransferase. Coexpression of a GBS capsule, the engineered EPA protein, and PglS enabled the covalent attachment of the target GBS capsule to an engineered serine residue on EPA, all within the periplasm of E. coli. GBS bioconjugates were purified, analytically characterized, and evaluated for immunogenicity and functional antibody responses. This proof-of-concept study signifies the first step in the development of a next-generation multivalent GBS bioconjugate vaccine, which was validated by the production of conjugates that are able to elicit functional antibodies directed against the GBS capsule.


Subject(s)
Escherichia coli , Streptococcal Infections , Adult , Antibodies, Bacterial , Escherichia coli/genetics , Humans , Infant, Newborn , Streptococcal Infections/prevention & control , Streptococcus agalactiae/genetics , Vaccines, Combined
19.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34588306

ABSTRACT

The type VI secretion system (T6SS) is a powerful tool deployed by Gram-negative bacteria to antagonize neighboring organisms. Here, we report that Acinetobacter baumannii ATCC 17978 (Ab17978) secretes D-lysine (D-Lys), increasing the extracellular pH and enhancing the peptidoglycanase activity of the T6SS effector Tse4. This synergistic effect of D-Lys on Tse4 activity enables Ab17978 to outcompete Gram-negative bacterial competitors, demonstrating that bacteria can modify their microenvironment to increase their fitness during bacterial warfare. Remarkably, this lethal combination also results in T6SS-mediated killing of Gram-positive bacteria. Further characterization revealed that Tse4 is a bifunctional enzyme consisting of both lytic transglycosylase and endopeptidase activities, thus representing a family of modularly organized T6SS peptidoglycan-degrading effectors with an unprecedented impact in antagonistic bacterial interactions.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/metabolism , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Type VI Secretion Systems/metabolism , Biological Transport/physiology
20.
PLoS Pathog ; 17(8): e1009802, 2021 08.
Article in English | MEDLINE | ID: mdl-34370792

ABSTRACT

Multidrug-resistant Acinetobacter baumannii infections are increasing at alarming rates. Therefore, novel antibiotic-sparing treatments to combat these A. baumannii infections are urgently needed. The development of these interventions would benefit from a better understanding of this bacterium's pathobiology, which remains poorly understood. A. baumannii is regarded as an extracellular opportunistic pathogen. However, research on Acinetobacter has largely focused on common lab strains, such as ATCC 19606, that have been isolated several decades ago. These strains exhibit reduced virulence when compared to recently isolated clinical strains. In this work, we demonstrate that, unlike ATCC 19606, several modern A. baumannii clinical isolates, including the recent clinical urinary isolate UPAB1, persist and replicate inside macrophages within spacious vacuoles. We show that intracellular replication of UPAB1 is dependent on a functional type I secretion system (T1SS) and pAB5, a large conjugative plasmid that controls the expression of several chromosomally-encoded genes. Finally, we show that UPAB1 escapes from the infected macrophages by a lytic process. To our knowledge, this is the first report of intracellular growth and replication of A. baumannii. We suggest that intracellular replication within macrophages may contribute to evasion of the immune response, dissemination, and antibiotic tolerance of A. baumannii.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/physiology , Bacterial Proteins/metabolism , Biofilms/growth & development , Macrophages/microbiology , Type I Secretion Systems/metabolism , Vacuoles/microbiology , Acinetobacter Infections/metabolism , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...