Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 67: 102909, 2023 11.
Article in English | MEDLINE | ID: mdl-37801856

ABSTRACT

Few therapies have produced significant improvement in cardiac structure and function after ischemic cardiac injury (ICI). Our possible explanation is activation of local inflammatory responses negatively impact the cardiac repair process following ischemic injury. Factors that can alter immune response, including significantly altered cytokine levels in plasma and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI is a valid strategy for reducing infarct size and damage after myocardial injury. Our previous studies showed that cortical bone stem cells (CBSCs) possess reparative effects after ICI. In our current study, we have identified that the beneficial effects of CBSCs appear to be mediated by miRNA in their extracellular vesicles (CBSC-EV). Our studies showed that CBSC-EV treated animals demonstrated reduced scar size, attenuated structural remodeling, and improved cardiac function versus saline treated animals. These effects were linked to the alteration of immune response, with significantly altered cytokine levels in plasma, and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI. Our detailed in vitro studies demonstrated that CBSC-EV are enriched in miR-182/183 that mediates the pro-reparative polarization and metabolic reprogramming in macrophages, including enhanced OXPHOS rate and reduced ROS, via Ras p21 protein activator 1 (RASA1) axis under Lipopolysaccharides (LPS) stimulation. In summary, CBSC-EV deliver unique molecular cargoes, such as enriched miR-182/183, that modulate the immune response after ICI by regulating macrophage polarization and metabolic reprogramming to enhance repair.


Subject(s)
Heart Injuries , MicroRNAs , Myocardial Infarction , Animals , Mice , Myocardium/metabolism , Myocardial Infarction/genetics , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cytokines/metabolism , GTPase-Activating Proteins/metabolism , Oxidation-Reduction , Mice, Inbred C57BL
2.
Circ Res ; 128(1): 92-114, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33092464

ABSTRACT

RATIONALE: Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE: To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS: Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after ß-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS: The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Calcium/metabolism , Hypertrophy, Left Ventricular/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium Channels, L-Type/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cats , Cells, Cultured , Disease Models, Animal , Excitation Contraction Coupling , Humans , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Kinetics , Male , Membrane Proteins/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Muscle Proteins/genetics , Mutation , Myocytes, Cardiac/pathology , Organelle Biogenesis , Protein Binding , Protein Interaction Domains and Motifs , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel
3.
Circ Res ; 123(11): 1220-1231, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30571461

ABSTRACT

RATIONALE: Possible beneficial effects of GDF11 (growth differentiation factor 11) on the normal, diseased, and aging heart have been reported, including reversing aging-induced hypertrophy. These effects have not been well validated. High levels of GDF11 have also been shown to cause cardiac and skeletal muscle wasting. These controversies could be resolved if dose-dependent effects of GDF11 were defined in normal and aged animals as well as in pressure overload-induced pathological hypertrophy. OBJECTIVE: To determine dose-dependent effects of GDF11 on normal hearts and those with pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS: Twelve- to 13-week-old C57BL/6 mice underwent transverse aortic constriction (TAC) surgery. One-week post-TAC, these mice received rGDF11 (recombinant GDF11) at 1 of 3 doses: 0.5, 1.0, or 5.0 mg/kg for up to 14 days. Treatment with GDF11 increased plasma concentrations of GDF11 and p-SMAD2 in the heart. There were no significant differences in the peak pressure gradients across the aortic constriction between treatment groups at 1 week post-TAC. Two weeks of GDF11 treatment caused dose-dependent decreases in cardiac hypertrophy as measured by heart weight/tibia length ratio, myocyte cross-sectional area, and left ventricular mass. GDF11 improved cardiac pump function while preventing TAC-induced ventricular dilation and caused a dose-dependent decrease in interstitial fibrosis (in vivo), despite increasing markers of fibroblast activation and myofibroblast transdifferentiation (in vitro). Treatment with the highest dose (5.0 mg/kg) of GDF11 caused severe body weight loss, with significant decreases in both muscle and organ weights and death in both sham and TAC mice. CONCLUSIONS: Although GDF11 treatment can reduce pathological cardiac hypertrophy and associated fibrosis while improving cardiac pump function in pressure overload, high doses of GDF11 cause severe cachexia and death. Use of GDF11 as a therapy could have potentially devastating actions on the heart and other tissues.


Subject(s)
Cachexia/etiology , Cardiomegaly/drug therapy , Growth Differentiation Factors/therapeutic use , Animals , Growth Differentiation Factors/administration & dosage , Growth Differentiation Factors/adverse effects , Growth Differentiation Factors/pharmacology , Injections, Intraperitoneal , Male , Mice , Mice, Inbred C57BL , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
4.
Sci Rep ; 7(1): 16587, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29185443

ABSTRACT

Heart Failure with preserved Ejection Fraction (HFpEF) represents a major public health problem. The causative mechanisms are multifactorial and there are no effective treatments for HFpEF, partially attributable to the lack of well-established HFpEF animal models. We established a feline HFpEF model induced by slow-progressive pressure overload. Male domestic short hair cats (n = 20), underwent either sham procedures (n = 8) or aortic constriction (n = 12) with a customized pre-shaped band. Pulmonary function, gas exchange, and invasive hemodynamics were measured at 4-months post-banding. In banded cats, echocardiography at 4-months revealed concentric left ventricular (LV) hypertrophy, left atrial (LA) enlargement and dysfunction, and LV diastolic dysfunction with preserved systolic function, which subsequently led to elevated LV end-diastolic pressures and pulmonary hypertension. Furthermore, LV diastolic dysfunction was associated with increased LV fibrosis, cardiomyocyte hypertrophy, elevated NT-proBNP plasma levels, fluid and protein loss in pulmonary interstitium, impaired lung expansion, and alveolar-capillary membrane thickening. We report for the first time in HFpEF perivascular fluid cuff formation around extra-alveolar vessels with decreased respiratory compliance. Ultimately, these cardiopulmonary abnormalities resulted in impaired oxygenation. Our findings support the idea that this model can be used for testing novel therapeutic strategies to treat the ever growing HFpEF population.


Subject(s)
Hypertension, Pulmonary , Hypertrophy, Left Ventricular , Pulmonary Alveoli , Ventricular Dysfunction, Left , Animals , Cats , Disease Models, Animal , Female , Fibrosis , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Hypertrophy, Left Ventricular/blood , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pulmonary Alveoli/blood supply , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , Stroke Volume , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
5.
Circ Res ; 119(7): 865-79, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27461939

ABSTRACT

RATIONALE: Catecholamines increase cardiac contractility, but exposure to high concentrations or prolonged exposures can cause cardiac injury. A recent study demonstrated that a single subcutaneous injection of isoproterenol (ISO; 200 mg/kg) in mice causes acute myocyte death (8%-10%) with complete cardiac repair within a month. Cardiac regeneration was via endogenous cKit(+) cardiac stem cell-mediated new myocyte formation. OBJECTIVE: Our goal was to validate this simple injury/regeneration system and use it to study the biology of newly forming adult cardiac myocytes. METHODS AND RESULTS: C57BL/6 mice (n=173) were treated with single injections of vehicle, 200 or 300 mg/kg ISO, or 2 daily doses of 200 mg/kg ISO for 6 days. Echocardiography revealed transiently increased systolic function and unaltered diastolic function 1 day after single ISO injection. Single ISO injections also caused membrane injury in ≈10% of myocytes, but few of these myocytes appeared to be necrotic. Circulating troponin I levels after ISO were elevated, further documenting myocyte damage. However, myocyte apoptosis was not increased after ISO injury. Heart weight to body weight ratio and fibrosis were also not altered 28 days after ISO injection. Single- or multiple-dose ISO injury was not associated with an increase in the percentage of 5-ethynyl-2'-deoxyuridine-labeled myocytes. Furthermore, ISO injections did not increase new myocytes in cKit(+/Cre)×R-GFP transgenic mice. CONCLUSIONS: A single dose of ISO causes injury in ≈10% of the cardiomyocytes. However, most of these myocytes seem to recover and do not elicit cKit(+) cardiac stem cell-derived myocyte regeneration.


Subject(s)
Isoproterenol/administration & dosage , Isoproterenol/toxicity , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Regeneration/drug effects , Animals , Catecholamines/administration & dosage , Catecholamines/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Cardiac/physiology , Regeneration/physiology
6.
J Immunol ; 193(12): 6031-40, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25392529

ABSTRACT

Influenza viruses remain a critical global health concern. More efficacious vaccines are needed to protect against influenza virus, yet few adjuvants are approved for routine use. Specialized proresolving mediators (SPMs) are powerful endogenous bioactive regulators of inflammation, with great clinical translational properties. In this study, we investigated the ability of the SPM 17-HDHA to enhance the adaptive immune response using an OVA immunization model and a preclinical influenza vaccination mouse model. Our findings revealed that mice immunized with OVA plus 17-HDHA or with H1N1-derived HA protein plus 17-HDHA increased Ag-specific Ab titers. 17-HDHA increased the number of Ab-secreting cells in vitro and the number of HA-specific Ab-secreting cells present in the bone marrow. Importantly, the 17-HDHA-mediated increased Ab production was more protective against live pH1N1 influenza infection in mice. To our knowledge, this is the first report on the biological effects of ω-3-derived SPMs on the humoral immune response. These findings illustrate a previously unknown biological link between proresolution signals and the adaptive immune system. Furthermore, this work has important implications for the understanding of B cell biology, as well as the development of new potential vaccine adjuvants.


Subject(s)
Docosahexaenoic Acids/pharmacology , Immunity, Humoral/drug effects , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Viral/immunology , Antibody Formation/drug effects , Antibody Formation/immunology , B-Lymphocyte Subsets/cytology , B-Lymphocyte Subsets/drug effects , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Cell Differentiation/drug effects , Cell Differentiation/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Mice , Orthomyxoviridae Infections/virology , Plasma Cells/cytology , Plasma Cells/drug effects , Plasma Cells/immunology , Plasma Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...