Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Pathogens ; 12(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003837

ABSTRACT

The COVID-19 disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), emerged in late 2019 and rapidly spread worldwide, becoming a pandemic that infected millions of people and caused significant deaths. COVID-19 continues to be a major threat, and there is a need to deepen our understanding of the virus and its mechanisms of infection. To study the cellular responses to SARS-CoV-2 infection, we performed an RNA sequencing of infected vs. uninfected Calu-3 cells. Total RNA was extracted from infected (0.5 MOI) and control Calu-3 cells and converted to cDNA. Sequencing was performed, and the obtained reads were quality-analyzed and pre-processed. Differential expression was assessed with the EdgeR package, and functional enrichment was performed in EnrichR for Gene Ontology, KEGG pathways, and WikiPathways. A total of 1040 differentially expressed genes were found in infected vs. uninfected Calu-3 cells, of which 695 were up-regulated and 345 were down-regulated. Functional enrichment analyses revealed the predominant up-regulation of genes related to innate immune response, response to virus, inflammation, cell proliferation, and apoptosis. These transcriptional changes following SARS-CoV-2 infection may reflect a cellular response to the infection and help to elucidate COVID-19 pathogenesis, in addition to revealing potential biomarkers and drug targets.

2.
Microb Pathog ; 169: 105658, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35764188

ABSTRACT

ABO blood group is long known to be an influencing factor for the susceptibility to infectious diseases, and many studies have been describing associations between ABO blood types and COVID-19 infection and severity, with conflicting findings. This narrative review aims to summarize the literature regarding associations between the ABO blood group and COVID-19. Blood type O is mostly associated with lower rates of SARS-CoV-2 infection, while blood type A is frequently described as a risk factor. Although results regarding the risk of severe outcomes are more variable, blood type A is the most associated with COVID-19 severity and mortality, while many studies describe O blood type as a protective factor for the disease progression. Furthermore, genetic associations with both the risk of infection and disease severity have been reported for the ABO locus. Some underlying mechanisms have been hypothesized to explain the reported associations, with incipient experimental data. Three major hypotheses emerge: SARS-CoV-2 could carry ABO(H)-like structures in its envelope glycoproteins and would be asymmetrically transmitted due to a protective effect of the ABO antibodies, ABH antigens could facilitate SARS-CoV-2 interaction with the host' cells, and the association of non-O blood types with higher risks of thromboembolic events could confer COVID-19 patients with blood type O a lower risk of severe outcomes. The hypothesized mechanisms would affect distinct aspects of the COVID-19 natural history, with distinct potential implications to the disease transmission and its management.


Subject(s)
COVID-19 , ABO Blood-Group System/genetics , Humans , Risk Factors , SARS-CoV-2 , Severity of Illness Index
3.
PeerJ ; 9: e10500, 2021.
Article in English | MEDLINE | ID: mdl-33859869

ABSTRACT

BACKGROUND: Physical exercise is a health promotion factor regulating gene expression and causing changes in phenotype, varying according to exercise type and intensity. Acute strenuous exercise in sedentary individuals appears to induce different transcriptional networks in response to stress caused by exercise. The objective of this research was to investigate the transcriptional profile of strenuous experimental exercise. METHODOLOGY: RNA-Seq was performed with Rattus norvegicus soleus muscle, submitted to strenuous physical exercise on a treadmill with an initial velocity of 0.5 km/h and increments of 0.2 km/h at every 3 min until animal exhaustion. Twenty four hours post-physical exercise, RNA-seq protocols were performed with coverage of 30 million reads per sample, 100 pb read length, paired-end, with a list of counts totaling 12816 genes. RESULTS: Eighty differentially expressed genes (61 down-regulated and 19 up-regulated) were obtained. Reactome and KEGG database searches revealed the most significant pathways, for down-regulated gene set, were: PI3K-Akt signaling pathway, RAF-MAP kinase, P2Y receptors and Signaling by Erbb2. Results suggest PI3K-AKT pathway inactivation by Hbegf, Fgf1 and Fgr3 receptor regulation, leading to inhibition of cell proliferation and increased apoptosis. Cell signaling transcription networks were found in transcriptome. Results suggest some metabolic pathways which indicate the conditioning situation of strenuous exercise induced genes encoding apoptotic and autophagy factors, indicating cellular stress. CONCLUSION: Down-regulated networks showed cell transduction and signaling pathways, with possible inhibition of cellular proliferation and cell degeneration. These findings reveal transitory and dynamic process in cell signaling transcription networks in skeletal muscle after acute strenuous exercise.

4.
Biol Sport ; 35(1): 3-11, 2018 Mar.
Article in English | MEDLINE | ID: mdl-30237656

ABSTRACT

Regular exercise is an exogenous factor of gene regulation with numerous health benefits. The study aimed to evaluate human genes linked to physical exercise in an 'omic scale, addressing biological questions to the generated database. Three literature databases were searched with the terms 'exercise', 'fitness', 'physical activity', 'genetics' and 'gene expression'. For additional references, papers were scrutinized and a text-mining tool was used. Papers linking genes to exercise in humans through microarray, RNA-Seq, RT-PCR and genotyping studies were included. Genes were extracted from the collected literature, together with information on exercise protocol, experimental design, gender, age, number of individuals, analytical method, fold change and statistical data. The 'omic scale dataset was characterized and evaluated with bioinformatics tools searching for gene expression patterns, functional meaning and gene clusters. As a result, a physical exercise-related human gene compendium was created, with data from 58 scientific papers and 5.147 genes functionally correlated with 17 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. While 50.9% of the gene set was up-regulated, 41.9% was down-regulated. 743 up- and 530 down-regulated clusters were found, some connected by regulatory networks. To summarize, up- and down-regulation was encountered, with a wide genomic distribution of the gene set and up- and down-regulated clusters possibly assembled by functional gene evolution. Physical exercise elicits a widespread response in gene expression.

5.
Article in English | MEDLINE | ID: mdl-27121380

ABSTRACT

BACKGROUND: Diabetes mellitus is a chronic degenerative disease responsible for hyperglycemic episodes through insulin secretion deficiency or cellular resistance. Clinical diagnosis in diabetic patients established that this disease affects the CNS, damaging the brain and impairing cognition, and thus establishing a clinical diabetic condition named diabetic encephalopathy. Despite the physiological mechanisms responsible for the development diabetic encephalopathy are still unclear, an excessive formation of reactive oxygen species, an alteration of acetylcholinesterase activity, and a reduction of growth factor levels, may be related with the pathogenesis of this condition. Pharmacological treatments with natural compounds have been proven useful to treat and cure a wide variety of diseases through their antioxidant actions. METHODS: This study built a compendium of chemical compounds used for the treatment of diabetic encephalopathy demonstrating the most important physiological targets that future drugs should aim for, reviewing them. RESULTS: As previously suspected, antioxidants and acetylcholinesterase inhibitors were useful to prevent memory loss in streptozotocin-induced animals. In addition, growth factors showed an improvement of memory in diabetic rodents. Most studies focused on antioxidant compounds despite cross studies researched both antioxidants and acetylcholinesterase activities. CONCLUSION: Therefore, it could be suggested that future studies regarding treatments for diabetic encephalopathy should focus on the antioxidant profile and acetylcholinesterase, since they seem to play pivotal roles in cognitive impairment in diabetes. No less important, studies with growth factors are also important physiological targets for treating the diabetic encephalopathy.

SELECTION OF CITATIONS
SEARCH DETAIL