Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764271

ABSTRACT

While the prudent and reasonable use of veterinary antimicrobial agents in food-producing animals is necessary, researchers over the decades have shown that these antimicrobial agents can spread into the environment through livestock manure and wastewater. The analysis of the occurrence of antimicrobial compounds in soil samples is of a great importance to determine potential impacts on human and animal health and the environment. In this study, an affordable, rugged and simple analytical method has been developed for the determination of twenty-nine antimicrobial compounds from five different classes (tetracyclines, fluoro(quinolones), macrolides, sulfonamides and diaminopirimidines). Liquid-liquid extraction (LLE) with extract filtration combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was the best strategy for the simultaneous determination of all analytes. The developed method was validated according to the Commission Implementing Regulation (EU) 2021/808. The limit of detections (LODs) ranged from 0.5 to 2.0 µg/kg, while the limit of quantitation (LOQ) was established at 1.0 to 20.0 µg/kg. The developed method was successfully applied for the determination of antimicrobial residues in one hundred and eighteen soil samples obtained from four European countries (Austria, Czech Republic, Estonia and Portugal). Doxycycline in the concentration levels of 9.07 µg/kg-20.6 µg/kg was detected in eight of the analysed samples. Samples were collected from areas where natural fertilizers (swine or cow manure) were applied. Our method can be efficiently used to monitor anti-microbial compounds in soil samples.


Subject(s)
Anti-Infective Agents , Tandem Mass Spectrometry , Cattle , Female , Humans , Swine , Animals , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Soil , Manure/analysis , Anti-Bacterial Agents/analysis , Solid Phase Extraction
2.
Anal Bioanal Chem ; 415(28): 6931-6950, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37162524

ABSTRACT

Metals have a fundamental role in microbiology, and accurate methods are needed for their identification and quantification. The inability to assess cellular heterogeneity is considered an impediment to the successful treatment of different diseases. Unlike bulk approaches, single-cell analysis allows elemental heterogeneity across genetically identical populations to be related to specific biological events and to the effectiveness of drugs. Single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) can analyse single cells in suspension and measure this heterogeneity. Here we explore advances in instrumental design, compare mass analysers and discuss key parameters requiring optimisation. This review has identified that the effect of pre-treatment of cell suspensions and cell fixation approaches require further study and novel validation methods are needed as using bulk measurements is unsatisfactory. SP-ICP-MS has the advantage that a large number of cells can be analysed; however, it does not provide spatial information. Techniques based on laser ablation (LA) enable elemental mapping at the single-cell level, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The sensitivity of commercial LIBS instruments restricts its use for sub-tissue applications; however, the capacity to analyse endogenous bulk components paired with developments in nano-LIBS technology shows great potential for cellular research. LA-ICP-MS offers high sensitivity for the direct analysis of single cells, but standardisation requires further development. The hyphenation of these trace elemental analysis techniques and their coupling with multi-omic technologies for single-cell analysis have enormous potential in answering fundamental biological questions.


Subject(s)
Laser Therapy , Trace Elements , Mass Spectrometry/methods , Spectrum Analysis , Metals/analysis , Trace Elements/analysis
3.
Sci Rep ; 12(1): 10778, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750875

ABSTRACT

There is a great demand from patients requiring skin repair, as a result of poorly healed acute wounds or chronic wounds. These patients are at high risk of constant inflammation that often leads to life-threatening infections. Therefore, there is an urgent need for new materials that could rapidly stimulate the healing process and simultaneously prevent infections. Phosphate-based coacervates (PC) have been the subject of increased interest due to their great potential in tissue regeneration and as controlled delivery systems. Being bioresorbable, they dissolve over time and simultaneously release therapeutic species in a continuous manner. Of particular interest is the controlled release of metallic antibacterial ions (e.g. Ag+), a promising alternative to conventional treatments based on antibiotics, often associated with antibacterial resistance (AMR). This study investigates a series of PC gels containing a range of concentrations of the antibacterial ion Ag+ (0.1, 0.3 and 0.75 mol%). Dissolution tests have demonstrated controlled release of Ag+ over time, resulting in a significant bacterial reduction (up to 7 log), against both non-AMR and AMR strains of both Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa). Dissolution tests have also shown controlled release of phosphates, Ca2+, Na+ and Ag+ with most of the release occurring in the first 24 h. Biocompatibility studies, assessed using dissolution products in contact with human keratinocyte cells (HaCaT) and bacterial strains, have shown a significant increase in cell viability (p ≤ 0.001) when gels are dissolved in cell medium compared to the control. These results suggest that gel-like silver doped PCs are promising multifunctional materials for smart wound dressings, being capable of simultaneously inhibit pathogenic bacteria and maintain good cell viability.


Subject(s)
Silver , Wound Infection , Anti-Bacterial Agents/pharmacology , Delayed-Action Preparations , Escherichia coli , Gels , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Ions , Microbial Sensitivity Tests , Phosphates/pharmacology , Silver/pharmacology , Wound Infection/drug therapy
4.
Environ Sci Pollut Res Int ; 28(35): 48929-48941, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33928502

ABSTRACT

Some regions of Argentina are affected by high concentrations of molybdenum, arsenic and vanadium from natural sources in their groundwater. In particular, Mo levels in groundwater from Eduardo Castex (La Pampa, Argentina) typically exceed the guidelines for drinking water formerly established by WHO at 70 µg/L. Therefore, this study investigated the uptake of Mo in plants, using cress (Lepidium sativum L.) as a model using hydroponic experiments with synthetic solutions and groundwater from La Pampa. Cress grown from control experiments (150 µg/L Mo, pH 7) presented an average Mo concentration of 35.2 mg/kg (dry weight, d.w.), higher than the typical total plant range (0.7-2.5 mg/kg d.w.) in the literature. Using pooled groundwater samples (65.0-92.5 µg/L Mo) from wells of La Pampa (Argentina) as growth solutions resulted in significantly lower cress Mo levels (1.89-4.59 mg/kg d.w.) than were obtained for synthetic solutions of equivalent Mo concentration. This may be due to the high levels in these groundwater samples of As, V, Fe and Mn which are known to be associated with volcanic deposits. This research addressed the hitherto scarcity of data about the effect of various physicochemical parameters on the uptake of Mo in plants.


Subject(s)
Arsenic , Drinking Water , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Molybdenum/analysis , Water Pollutants, Chemical/analysis
5.
Foods ; 9(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081306

ABSTRACT

Chemical composition analysis of açaí extracts revealed higher levels of total polyphenol content in purple açaí samples for both commercial (4.3-44.7 gallic acid equivalents mg/g) and non-commercial samples (30.2-42.0 mg/g) compared to white (8.2-11.9 mg/g) and oil samples (0.8-4.6 mg/g). The major anthocyanin compounds found in purple açaí samples were cyanidin-3-glucoside and cyanidin-3-rutinoside with total concentrations in the range of 3.6-14.3 cyanidin-3-glucoside equivalents mg/g. The oligomeric proanthocyanidins were quantified in the range of 1.5-6.1 procyanidin B1 equivalents mg/g. Moreover, açaí presented significant levels of calcium, magnesium, manganese, iron, zinc and copper, essential minor and trace elements, in comparison with other berries. All of the açaí extracts at 50 µg/mL potently inhibited the release of reactive oxygen species in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells, but none inhibited the release of nitric oxide. Furthermore, all the açaí samples demonstrated potential as wound healing agents due to the high levels of migration activity in human fibroblast cells.

6.
Food Funct ; 11(6): 4903-4914, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32495808

ABSTRACT

Acai fruit is recognized for its health promoting properties. However, there is still a need to address the effects of industrial processing on this fruit. In this study, phenolic content, anti-inflammatory properties and dermal wound repair properties of 20 acai samples, before and after industrial processing, from various Amazon regions were investigated. Acai pulp was rich in total phenolics (18.9-58.8 mg g-1) and proanthocyanins (9.8-43.1 mg g-1), but contained trace anthocyanins (up to 0.1 mg g-1). Industrially processed samples lost substantial amounts of proanthocyanidins (up to 83.2%), while the anthocyanins inherently present were greatly enriched after processing (20-fold higher). Non-processed acai pulp extracts protected against early inflammation response which was correlated with proanthocyanidins, by significantly inhibiting nitric oxide production and suppressing pro-inflammatory gene expression including interleukin-1ß, cyclooxygenase-2, nitric oxide synthase, and interleukin-6. The promotion of dermal wound repair of acai seed and pulp extracts was mainly contributed by anthocyanins and other bioactive compounds. The anti-inflammatory effect was diminished but wound healing effect was retained after pulp processing, suggesting the processing technology needs to be improved to maintain biological properties of acai fruit.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arecaceae , Plant Extracts/pharmacology , Wound Healing/drug effects , Animals , Brazil , Food Industry , Fruit , Humans , Mice , Phytotherapy , Plant Extracts/chemistry , Polyphenols/chemistry , RAW 264.7 Cells/drug effects
7.
Water Res ; 162: 492-504, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31302365

ABSTRACT

Epidemiological studies have consistently associated the consumption of chlorinated drinking water with an enhanced risk of bladder cancer. While this suggests that some disinfection byproducts (DBPs) are bladder carcinogens, causal agents are unknown. This study aims to highlight likely candidates. To achieve this, structures of known and hypothesised DBPs were compared with 76 known bladder carcinogens. The latter are dominated by nitrogenous and aromatic compounds; only 10 are halogenated. Under 10% of the chlorine applied during drinking water treatment is converted into identified halogenated byproducts; most of the chlorine is likely to be consumed during the generation of unidentified non-halogenated oxidation products. Six nitrosamines are among the nine most potent bladder carcinogens, and two of them are known to be DBPs: N-nitrosodiphenylamine and nitrosodibutylamine. However, these and other nitrosamines are formed in insufficiently low concentrations in chlorinated drinking water to account for the observed bladder cancer risk. Furthermore, although not proven bladder carcinogens, certain amines, haloamides, halocyclopentenoic acids, furans and haloquinones are potential candidates. At present, most identified bladder carcinogens are nitrogenous, whereas >90% of natural organic matter is not. Therefore, non-nitrogenous DBPs are likely to contribute to the bladder cancer risk. Given the high proportion of DBPs that remains uncharacterised, it is important that future research prioritises compounds believed to be potent toxicants.


Subject(s)
Disinfectants , Drinking Water , Urinary Bladder Neoplasms , Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Humans
8.
Food Chem ; 246: 258-265, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29291847

ABSTRACT

Water from La Pampa, Argentina, was used for washing and cooking rice to examine the in-situ impact of using naturally-contaminated water for food preparation on the elemental dietary intake. Whilst washing with the control tap water (28 µg/L As) reduced the concentration of As in rice by 23%, the use of different well waters (281-1144 µg/L) increased As levels significantly (48-227%) in comparison with the original concentration in the rice (0.056 µg/g). Cooking the rice at a low water-to-rice ratio (2:1) using modern methods increased the levels of As in the cooked samples by 2-3 orders of magnitude for both pre-washed and un-washed rice. Similar trends were observed for vanadium. Although the levels of manganese, iron, copper, zinc and molybdenum in rice were reduced during washing and cooking for most water samples, the molybdenum concentration in the cooked rice doubled (2.2-2.9 µg/g) when using water containing >1 mg/L Mo.


Subject(s)
Arsenic/analysis , Cooking/methods , Drinking Water/chemistry , Food Contamination/analysis , Oryza/chemistry , Water Pollution , Argentina , Diet , Groundwater , Humans , Water Pollutants/analysis , Water Pollutants, Chemical/analysis
9.
Langmuir ; 30(39): 11746-52, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-24621350

ABSTRACT

A novel two-photon-fluorescent N,O-heteroatom-rich carbon nanomaterial has been synthesized and characterized. The new carbon nanoparticles were produced by hydrothermal conversion from a one-photon-fluorescent poly(4-vinylpyridine) precursor (P4VP). The carbonized particles (cP4VP dots) with nonuniform particle diameter (ranging from sub-6 to 20 nm with some aggregates up to 200 nm) exhibit strong fluorescence properties in different solvents and have also been investigated for applications in cell culture media. The cP4VP dots retain their intrinsic fluorescence in a cellular environment and exhibit an average excited-state lifetime of 2.0 ± 0.9 ns in the cell. The cP4VP dots enter HeLa cells and do not cause significant damage to outer cell membranes. They provide one-photon or two-photon fluorescent synthetic scaffolds for imaging applications and/or drug delivery.


Subject(s)
Carbon/chemistry , Fluorescent Dyes/chemistry , Microscopy, Fluorescence, Multiphoton , Nanoparticles/chemistry , Photons , Polyvinyls/chemistry , Temperature , Biological Transport , Fluorescent Dyes/metabolism , HeLa Cells , Humans , Polyvinyls/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...