Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Transl Neurodegener ; 13(1): 13, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438877

ABSTRACT

BACKGROUND: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). These mutations elevate the LRRK2 kinase activity, making LRRK2 kinase inhibitors an attractive therapeutic. LRRK2 kinase activity has been consistently linked to specific cell signaling pathways, mostly related to organelle trafficking and homeostasis, but its relationship to PD pathogenesis has been more difficult to define. LRRK2-PD patients consistently present with loss of dopaminergic neurons in the substantia nigra but show variable development of Lewy body or tau tangle pathology. Animal models carrying LRRK2 mutations do not develop robust PD-related phenotypes spontaneously, hampering the assessment of the efficacy of LRRK2 inhibitors against disease processes. We hypothesized that mutations in LRRK2 may not be directly related to a single disease pathway, but instead may elevate the susceptibility to multiple disease processes, depending on the disease trigger. To test this hypothesis, we have previously evaluated progression of α-synuclein and tau pathologies following injection of proteopathic seeds. We demonstrated that transgenic mice overexpressing mutant LRRK2 show alterations in the brain-wide progression of pathology, especially at older ages. METHODS: Here, we assess tau pathology progression in relation to long-term LRRK2 kinase inhibition. Wild-type or LRRK2G2019S knock-in mice were injected with tau fibrils and treated with control diet or diet containing LRRK2 kinase inhibitor MLi-2 targeting the IC50 or IC90 of LRRK2 for 3-6 months. Mice were evaluated for tau pathology by brain-wide quantitative pathology in 844 brain regions and subsequent linear diffusion modeling of progression. RESULTS: Consistent with our previous work, we found systemic alterations in the progression of tau pathology in LRRK2G2019S mice, which were most pronounced at 6 months. Importantly, LRRK2 kinase inhibition reversed these effects in LRRK2G2019S mice, but had minimal effect in wild-type mice, suggesting that LRRK2 kinase inhibition is likely to reverse specific disease processes in G2019S mutation carriers. Additional work may be necessary to determine the potential effect in non-carriers. CONCLUSIONS: This work supports a protective role of LRRK2 kinase inhibition in G2019S carriers and provides a rational workflow for systematic evaluation of brain-wide phenotypes in therapeutic development.


Subject(s)
Brain , Dopaminergic Neurons , Animals , Humans , Mice , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Lewy Bodies , Mice, Transgenic , Mutation/genetics
2.
J Med Chem ; 66(21): 14912-14927, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37861679

ABSTRACT

Genetic mutation of the leucine-rich repeat kinase 2 (LRRK2) protein has been associated with Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder that is devoid of efficacious disease-modifying therapies. Herein, we describe the invention of an amidoisoquinoline (IQ)-derived LRRK2 inhibitor lead chemical series. Knowledge-, structure-, and property-based drug design in concert with rigorous application of in silico calculations and presynthesis predictions enabled the prioritization of molecules with favorable CNS "drug-like" physicochemical properties. This resulted in the discovery of compound 8, which was profiled extensively before human ether-a-go-go (hERG) ion channel inhibition halted its progression. Strategic reduction of lipophilicity and basicity resulted in attenuation of hERG ion channel inhibition while maintaining a favorable CNS efflux transporter profile. Further structure- and property-based optimizations resulted in the discovery of preclinical candidate MK-1468. This exquisitely selective LRRK2 inhibitor has a projected human dose of 48 mg BID and a preclinical safety profile that supported advancement toward GLP toxicology studies.


Subject(s)
Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Brain/metabolism , Mutation , Ion Channels/metabolism
3.
Cleft Palate Craniofac J ; : 10556656231191384, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37533341

ABSTRACT

OBJECTIVE: Identification of patient factors influencing velopharyngeal function for speech following initial cleft palate repair. DESIGN: A literature search of relevant databases from inception until 2018 was performed using medical subject headings and keywords related to cleft palate, palatoplasty and speech assessment. Following three stage screening data extraction was performed. SETTING: Systematic review and meta-analysis of relevant literature. PATIENTS/PARTICIPANTS: Three hundred and eighty-three studies met the inclusion criteria, comprising data on 47 658 participants. INTERVENTIONS: Individuals undergoing initial palatoplasty. MAIN OUTCOME MEASURES: Studies including participants undergoing initial cleft palate repair where the frequency of secondary speech surgery and/or velopharyngeal function for speech was recorded. RESULTS: Patient factors reported included cleft phenotype (95% studies), biological sex (64%), syndrome diagnosis (44%), hearing loss (28%), developmental delay (16%), Robin Sequence (16%) and 22q11.2 microdeletion syndrome (11%). Meta-analysis provided strong evidence that rates of secondary surgery and velopharyngeal dysfunction varied according to cleft phenotype (Veau I best outcomes, Veau IV worst outcomes), Robin Sequence and syndrome diagnosis. There was no evidence that biological sex was associated with worse outcomes. Many studies were poor quality with minimal follow-up. CONCLUSIONS: Meta-analysis demonstrated the association of certain patient factors with speech outcome, however the quality of the evidence was low. Uniform, prospective, multi-centre documentation of preoperative characteristics and speech outcomes is required to characterise risk factors for post-palatoplasty velopharyngeal insufficiency for speech. SYSTEMATIC REVIEW REGISTRATION: Registered with PROSPERO CRD42017051624.

4.
NPJ Parkinsons Dis ; 9(1): 74, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37169750

ABSTRACT

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are progressive neurodegenerative diseases characterized by the accumulation of misfolded α-synuclein in the form of Lewy pathology. While most cases are sporadic, there are rare genetic mutations that cause disease and more common variants that increase incidence of disease. The most prominent genetic mutations for PD and DLB are in the GBA1 and LRRK2 genes. GBA1 mutations are associated with decreased glucocerebrosidase activity and lysosomal accumulation of its lipid substrates, glucosylceramide and glucosylsphingosine. Previous studies have shown a link between this enzyme and lipids even in sporadic PD. However, it is unclear how the protein pathologies of disease are related to enzyme activity and glycosphingolipid levels. To address this gap in knowledge, we examined quantitative protein pathology, glucocerebrosidase activity and lipid substrates in parallel from 4 regions of 91 brains with no neurological disease, idiopathic, GBA1-linked, or LRRK2-linked PD and DLB. We find that several biomarkers are altered with respect to mutation and progression to dementia. We found mild association of glucocerebrosidase activity with disease, but a strong association of glucosylsphingosine with α-synuclein pathology, irrespective of genetic mutation. This association suggests that Lewy pathology precipitates changes in lipid levels related to progression to dementia.

5.
J Med Chem ; 65(24): 16801-16817, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36475697

ABSTRACT

Inhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1H-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp3-sp2 cross-coupling technologies. This resulted in the discovery of a unique sp3-rich spirocarbonitrile motif that imparted extraordinary potency, pharmacokinetics, and favorable CNS drug-like properties. The lead compound, 25, demonstrated exceptional on-target potency in human peripheral blood mononuclear cells, excellent off-target kinase selectivity, and good brain exposure in rat, culminating in a low projected human dose and a pre-clinical safety profile that warranted advancement toward pre-clinical candidate enabling studies.


Subject(s)
Parkinson Disease , Rats , Humans , Animals , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease/drug therapy , Indazoles/pharmacology , Indazoles/therapeutic use , Leukocytes, Mononuclear/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Brain/metabolism , Adenosine Triphosphate
6.
J Med Chem ; 65(1): 838-856, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34967623

ABSTRACT

The leucine-rich repeat kinase 2 (LRRK2) protein has been genetically and functionally linked to Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder whose current therapies are limited in scope and efficacy. In this report, we describe a rigorous hit-to-lead optimization campaign supported by structural enablement, which culminated in the discovery of brain-penetrant, candidate-quality molecules as represented by compounds 22 and 24. These compounds exhibit remarkable selectivity against the kinome and offer good oral bioavailability and low projected human doses. Furthermore, they showcase the implementation of stereochemical design elements that serve to enable a potency- and selectivity-enhancing increase in polarity and hydrogen bond donor (HBD) count while maintaining a central nervous system-friendly profile typified by low levels of transporter-mediated efflux and encouraging brain penetration in preclinical models.


Subject(s)
Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/pharmacology , Brain/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Antiparkinson Agents/pharmacokinetics , Biological Availability , Drug Design , Humans , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacokinetics , Structure-Activity Relationship
7.
RSC Med Chem ; 12(7): 1164-1173, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34355182

ABSTRACT

The discovery of potent, kinome selective, brain penetrant LRRK2 inhibitors is the focus of extensive research seeking new, disease-modifying treatments for Parkinson's disease (PD). Herein, we describe the discovery and evolution of a picolinamide-derived lead series. Our initial optimization efforts aimed at improving the potency and CLK2 off-target selectivity of compound 1 by modifying the heteroaryl C-H hinge and linker regions. This resulted in compound 12 which advanced deep into our research operating plan (ROP) before heteroaryl aniline metabolite 14 was characterized as Ames mutagenic, halting its progression. Strategic modifications to our ROP were made to enable early de-risking of putative aniline metabolites or hydrolysis products for mutagenicity in Ames. This led to the discovery of 3,5-diaminopyridine 15 and 4,6-diaminopyrimidine 16 as low risk for mutagenicity (defined by a 3-strain Ames negative result). Analysis of key matched molecular pairs 17 and 18 led to the prioritization of the 3,5-diaminopyridine sub-series for further optimization due to enhanced rodent brain penetration. These efforts culminated in the discovery of ethyl trifluoromethyl pyrazole 23 with excellent LRRK2 potency and expanded selectivity versus off-target CLK2.

8.
J Pharmacol Exp Ther ; 377(1): 11-19, 2021 04.
Article in English | MEDLINE | ID: mdl-33509901

ABSTRACT

Gain-of-function mutations in leucine-rich kinase 2 (LRRK2) are associated with increased incidence of Parkinson disease (PD); thus, pharmacological inhibition of LRRK2 kinase activity is postulated as a disease-modifying treatment of PD. Histomorphological changes in lungs of nonhuman primates (NHPs) treated with small-molecule LRRK2 kinase inhibitors have brought the safety of this treatment approach into question. Although it remains unclear how LRRK2 kinase inhibition affects the lung, continued studies in NHPs prove to be both cost- and resource-prohibitive. To develop a tractable alternative animal model platform, we dosed male mice in-diet with the potent, highly selective LRRK2 kinase inhibitor MLi-2 and induced histomorphological changes in lung within 1 week. Oral bolus dosing of MLi-2 at a frequency modeled to provide steady-state exposure equivalent to that achieved with in-diet dosing induced type II pneumocyte vacuolation, suggesting pulmonary changes require sustained LRRK2 kinase inhibition. Treating mice with MLi-2 in-diet for up to 6 months resulted in type II pneumocyte vacuolation that progressed only modestly over time and was fully reversible after withdrawal of MLi-2. Immunohistochemical analysis of lung revealed a significant increase in prosurfactant protein C staining within type II pneumocytes. In the present study, we demonstrated the kinetics for onset, progression, and rapid reversibility of chronic LRRK2 kinase inhibitor effects on lung histomorphology in rodents and provide further evidence for the derisking of safety and tolerability concerns for chronic LRRK2 kinase inhibition in PD. SIGNIFICANCE STATEMENT: We have defined a mouse model by which the on-target lung effects of leucine-rich kinase 2 (LRRK2) kinase inhibition can be monitored, whereas previous in vivo testing relied solely on nonhuman primates. Data serve to derisk long-term treatment with LRRK2 kinase inhibitors, as all lung changes were mild and readily reversible.


Subject(s)
Alveolar Epithelial Cells/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Animals , Indazoles/administration & dosage , Indazoles/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Mice , Mice, Inbred C57BL , Morpholines/administration & dosage , Morpholines/pharmacology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Protein C/metabolism , Pyrimidines/administration & dosage , Pyrimidines/pharmacology
9.
Front Neurosci ; 14: 865, 2020.
Article in English | MEDLINE | ID: mdl-33013290

ABSTRACT

Evidence is mounting that LRRK2 function, particularly its kinase activity, is elevated in multiple forms of Parkinson's disease, both idiopathic as well as familial forms linked to mutations in the LRRK2 gene. However, sensitive quantitative markers of LRRK2 activation in clinical samples remain at the early stages of development. There are several measures of LRRK2 activity that could potentially be used in longitudinal studies of disease progression, as inclusion/exclusion criteria for clinical trials, to predict response to therapy, or as markers of target engagement. Among these are levels of LRRK2, phosphorylation of LRRK2 itself, either by other kinases or via auto-phosphorylation, its in vitro kinase activity, or phosphorylation of downstream substrates. This is advantageous on many levels, in that multiple indices of elevated kinase activity clearly strengthen the rationale for targeting this kinase with novel therapeutic candidates, and provide alternate markers of activation in certain tissues or biofluids for which specific measures are not detectable. However, this can also complicate interpretation of findings from different studies using disparate measures. In this review we discuss the current state of LRRK2-focused biomarkers, the advantages and disadvantages of the current pallet of outcome measures, the gaps that need to be addressed, and the priorities that the field has defined.

10.
Front Neurol ; 11: 324, 2020.
Article in English | MEDLINE | ID: mdl-32477237

ABSTRACT

Sleep disturbances co-occur with and precede the onset of motor symptoms in Parkinson's disease (PD). We evaluated sleep fragmentation and thalamocortical sleep spindles in mice expressing the p.G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) gene, one of the most common genetic forms of PD. Thalamocortical sleep spindles are oscillatory events that occur during slow-wave sleep that are involved in memory consolidation. We acquired data from electrocorticography, sleep behavioral measures, and a rotarod-based motor enrichment task in 28 LRRK2-G2019S knock-in mice and 27 wild-type controls (8-10 month-old males). Sleep was more fragmented in LRRK2-G2019S mice; sleep bouts were shorter and more numerous, even though total sleep time was similar to controls. LRRK2-G2019S animals expressed more sleep spindles, and individual spindles were longer in duration than in controls. We then chronically administered the LRRK2-inhibitor MLi-2 in-diet to n = 12 LRRK2-G2019S and n = 15 wild-type mice for a within-subject analysis of the effects of kinase inhibition on sleep behavior and physiology. Treatment with MLi-2 did not impact these measures. The data indicate that the LRRK2-G2019S mutation could lead to reduced sleep quality and altered sleep spindle physiology. This suggests that sleep spindles in LRRK2-G2019S animals could serve as biomarkers for underlying alterations in sleep networks resulting from the LRRK2-G2019S mutation, and further evaluation in human LRRK2-G2019S carriers is therefore warranted.

11.
Cell Rep ; 31(5): 107614, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32375042

ABSTRACT

Mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). However, the precise function of LRRK2 remains unclear. We report an interaction between LRRK2 and VPS52, a subunit of the Golgi-associated retrograde protein (GARP) complex that identifies a function of LRRK2 in regulating membrane fusion at the trans-Golgi network (TGN). At the TGN, LRRK2 further interacts with the Golgi SNAREs VAMP4 and Syntaxin-6 and acts as a scaffolding platform that stabilizes the GARP-SNAREs complex formation. Therefore, LRRK2 influences both retrograde and post-Golgi trafficking pathways in a manner dependent on its GTP binding and kinase activity. This action is exaggerated by mutations associated with Parkinson's disease and can be blocked by kinase inhibitors. Disruption of GARP sensitizes dopamine neurons to mutant LRRK2 toxicity in C. elegans, showing that these pathways are interlinked in vivo and suggesting a link in PD.


Subject(s)
Golgi Apparatus/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Membrane Proteins/metabolism , Protein Transport/physiology , trans-Golgi Network/metabolism , Animals , Humans , Mice , Parkinson Disease/metabolism , Protein Binding , Vesicular Transport Proteins/metabolism
12.
Sci Transl Med ; 12(540)2020 04 22.
Article in English | MEDLINE | ID: mdl-32321864

ABSTRACT

The kinase-activating mutation G2019S in leucine-rich repeat kinase 2 (LRRK2) is one of the most common genetic causes of Parkinson's disease (PD) and has spurred development of LRRK2 inhibitors. Preclinical studies have raised concerns about the safety of LRRK2 inhibitors due to histopathological changes in the lungs of nonhuman primates treated with two of these compounds. Here, we investigated whether these lung effects represented on-target pharmacology and whether they were reversible after drug withdrawal in macaques. We also examined whether treatment was associated with pulmonary function deficits. We conducted a 2-week repeat-dose toxicology study in macaques comparing three different LRRK2 inhibitors: GNE-7915 (30 mg/kg, twice daily as a positive control), MLi-2 (15 and 50 mg/kg, once daily), and PFE-360 (3 and 6 mg/kg, once daily). Subsets of animals dosed with GNE-7915 or MLi-2 were evaluated 2 weeks after drug withdrawal for lung function. All compounds induced mild cytoplasmic vacuolation of type II lung pneumocytes without signs of lung degeneration, implicating on-target pharmacology. At low doses of PFE-360 or MLi-2, there was ~50 or 100% LRRK2 inhibition in brain tissue, respectively, but histopathological lung changes were either absent or minimal. The lung effect was reversible after dosing ceased. Lung function tests demonstrated that the histological changes in lung tissue induced by MLi-2 and GNE-7915 did not result in pulmonary deficits. Our results suggest that the observed lung effects in nonhuman primates in response to LRRK2 inhibitors should not preclude clinical testing of these compounds for PD.


Subject(s)
Parkinson Disease , Animals , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Lung , Morpholines , Mutation , Primates , Pyrimidines , Pyrroles
13.
Bioorg Med Chem Lett ; 27(18): 4247-4255, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28869077

ABSTRACT

Parkinson's Disease (PD) is the second most common neurodegenerative disorder. Clinical approaches to manage PD include symptomatic therapies, serving to compensate for the effects of dopaminergic neuronal deficits, as well as more recently a move toward disease modification, with the goal of slowing or stopping disease progression. This perspective surveys the approved therapies for PD treatment as well as provides a view of the ongoing clinical approaches aimed at improving outcomes for PD patients.


Subject(s)
Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Humans , Molecular Structure , Neuroprotective Agents/chemistry
14.
J Med Chem ; 60(7): 2983-2992, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28245354

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (1): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Animals , Brain/metabolism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Indazoles/administration & dosage , Indazoles/pharmacokinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Molecular Docking Simulation , Parkinson Disease/drug therapy , Parkinson Disease/enzymology , Rats , Rats, Wistar
15.
Elife ; 52016 Jan 29.
Article in English | MEDLINE | ID: mdl-26824392

ABSTRACT

Mutations in Park8, encoding for the multidomain Leucine-rich repeat kinase 2 (LRRK2) protein, comprise the predominant genetic cause of Parkinson's disease (PD). G2019S, the most common amino acid substitution activates the kinase two- to threefold. This has motivated the development of LRRK2 kinase inhibitors; however, poor consensus on physiological LRRK2 substrates has hampered clinical development of such therapeutics. We employ a combination of phosphoproteomics, genetics, and pharmacology to unambiguously identify a subset of Rab GTPases as key LRRK2 substrates. LRRK2 directly phosphorylates these both in vivo and in vitro on an evolutionary conserved residue in the switch II domain. Pathogenic LRRK2 variants mapping to different functional domains increase phosphorylation of Rabs and this strongly decreases their affinity to regulatory proteins including Rab GDP dissociation inhibitors (GDIs). Our findings uncover a key class of bona-fide LRRK2 substrates and a novel regulatory mechanism of Rabs that connects them to PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/physiopathology , Protein Processing, Post-Translational , Proteome/analysis , rab GTP-Binding Proteins/metabolism , Animals , Gene Expression Regulation , Humans , Mice, Knockout
16.
J Pharmacol Exp Ther ; 355(3): 397-409, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26407721

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of familial and sporadic Parkinson's disease (PD). That the most prevalent mutation, G2019S, leads to increased kinase activity has led to a concerted effort to identify LRRK2 kinase inhibitors as a potential disease-modifying therapy for PD. An internal medicinal chemistry effort identified several potent and highly selective compounds with favorable drug-like properties. Here, we characterize the pharmacological properties of cis-2,6-dimethyl-4-(6-(5-(1-methylcyclopropoxy)-1H-indazol-3-yl)pyrimidin-4-yl)morpholine (MLi-2), a structurally novel, highly potent, and selective LRRK2 kinase inhibitor with central nervous system activity. MLi-2 exhibits exceptional potency in a purified LRRK2 kinase assay in vitro (IC50 = 0.76 nM), a cellular assay monitoring dephosphorylation of LRRK2 pSer935 LRRK2 (IC50 = 1.4 nM), and a radioligand competition binding assay (IC50 = 3.4 nM). MLi-2 has greater than 295-fold selectivity for over 300 kinases in addition to a diverse panel of receptors and ion channels. Acute oral and subchronic dosing in MLi-2 mice resulted in dose-dependent central and peripheral target inhibition over a 24-hour period as measured by dephosphorylation of pSer935 LRRK2. Treatment of MitoPark mice with MLi-2 was well tolerated over a 15-week period at brain and plasma exposures >100× the in vivo plasma IC50 for LRRK2 kinase inhibition as measured by pSer935 dephosphorylation. Morphologic changes in the lung, consistent with enlarged type II pneumocytes, were observed in MLi-2-treated MitoPark mice. These data demonstrate the suitability of MLi-2 as a compound to explore LRRK2 biology in cellular and animal models.


Subject(s)
Antiparkinson Agents/adverse effects , Antiparkinson Agents/therapeutic use , Indazoles/pharmacology , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Animals , Behavior, Animal/drug effects , Binding, Competitive , Brain/metabolism , Brain Chemistry/drug effects , Cell Line , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Dose-Response Relationship, Drug , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Parkinson Disease/psychology , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
17.
Neuropharmacology ; 99: 1-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26100446

ABSTRACT

The interactions between the glutamatergic and the histaminergic systems in the brain are not fully understood. Here we studied histamine release in the medial prefrontal cortex and the posterior hypothalamus-tuberomamillary nucleus (PH-TMN) using in vivo microdialysis and electrophysiological recordings of histaminergc neurons in the PH-TMN in vivo to further address the mechanistic details of these interactions. We demonstrated that histaminergic activity was regulated by group II metabotropic glutamate receptors (mGluR 2 and 3) using systemic dosing with mGluR 2/3 agonist and antagonists and an mGluR 2 positive allosteric modulator. These interactions likely occur via direct modulation of glutamate release in the PH-TMN. The importance of circadian rhythm for histamine release was also shown using microdialysis studies with mGluR 2/3 compounds under light and dark conditions. Based on histamine release studies with NMDA and ketamine, we propose the existence of two sub-populations of NMDA receptors where one subtype is located on histaminergic cell bodies in the PH-TMN and the second on GABA-ergic neurons projecting to the PH-TMN. These subpopulations could be distinguished based on function, notably opposing actions were seen on histamine release in the medial prefrontal cortex of the rat. In summary, this paper provides evidence that the histaminergic system is closely regulated by glutamate neurons in multiple ways. In addition, this interaction depends to a great extent on the activity state of the subject.


Subject(s)
Brain/physiology , Glutamic Acid/metabolism , Histamine/metabolism , Neurons/physiology , Receptors, Metabotropic Glutamate/metabolism , Animals , Brain/drug effects , Circadian Rhythm/physiology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Male , Microdialysis , Microelectrodes , Neurons/drug effects , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , gamma-Aminobutyric Acid/metabolism
19.
J Plast Reconstr Aesthet Surg ; 67(9): 1194-200, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24888227

ABSTRACT

BACKGROUND: Humanitarian organisations commonly provide reconstructive treatment for patients with cleft lip within developing countries, but follow-up is often non-existent, particularly for those living in rural areas. This study aimed to assess whether a single surgical intervention was sufficient to produce an observable change to the life of a patient with cleft lip living in rural Hararghe in eastern Ethiopia. METHODS: 356 patients with isolated cleft lips, who received a single surgical treatment at least 6 months previously, were evaluated in 21 rural health centres. RESULTS: Patients and their families expressed unhappiness before treatment, mainly because the society reacted negatively towards the deformities, isolating the patients from community activities. Postoperatively, the percentage of school-aged children participating in education increased from 46% to 79%, some older patients were able to marry, but employment was unaffected. The prevalence of wound dehiscence in the lip repair was 3% and occurred more frequently in patients with a bilateral cleft lip compared to a unilateral cleft lip (p < 0.001, RR 49.25, 95% CI 6.7-1037.35). CONCLUSIONS: We demonstrated that follow-up can be achieved by charitable organisations treating rural patients and that the majority of patients report a positive impact following surgical intervention. We recommend that bilateral cleft lips have a more intense rural aftercare.


Subject(s)
Cleft Lip/surgery , Dermatologic Surgical Procedures/methods , Adolescent , Adult , Child , Child, Preschool , Ethiopia/epidemiology , Female , Follow-Up Studies , Humans , Infant , Male , Photography , Postoperative Complications/epidemiology , Rural Health Services , Rural Population , Treatment Outcome
20.
Front Psychiatry ; 3: 49, 2012.
Article in English | MEDLINE | ID: mdl-22629251

ABSTRACT

Atypical antipsychotics such as clozapine and olanzapine have been shown to enhance histamine turnover and this effect has been hypothesized to contribute to their improved therapeutic profile compared to typical antipsychotics. In the present study, we examined the effects of antipsychotic drugs on histamine (HA) efflux in the mPFC of the rat by means of in vivo microdialysis and sought to differentiate the receptor mechanisms which underlie such effects. Olanzapine and clozapine increased mPFC HA efflux in a dose related manner. Increased HA efflux was also observed after quetiapine, chlorpromazine, and perphenazine treatment. We found no effect of the selective 5-HT(2A) antagonist MDL100907, 5-HT(2c) antagonist SB242084, or the 5-HT(6) antagonist Ro 04-6790 on mPFC HA efflux. HA efflux was increased following treatment with selective H(1) receptor antagonists pyrilamine, diphenhydramine, and triprolidine, the H(3) receptor antagonist ciproxifan and the mixed 5-HT(2A)/H(1) receptor antagonist ketanserin. The potential novel antipsychotic drug FMPD, which has a lower affinity at H(1) receptors than olanzapine, did not affect HA efflux. Similarly, other antipsychotics with lower H(1) receptor affinity (risperidone, aripiprazole, and haloperidol) were also without effect on HA efflux. Finally, HA efflux after antipsychotic treatment was significantly correlated with affinity at H(1) receptors whereas nine other receptors, including 5-HT(2A), were not. These results demonstrate that both typical and atypical antipsychotics increase mPFC histamine efflux and this effect may be mediated via antagonism of histamine H(1) receptors.

SELECTION OF CITATIONS
SEARCH DETAIL
...