Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(21): 9217-9221, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35588478

ABSTRACT

The ternary neptunium(V) (Np(V)) hydroxides Na0.5[NpO2(OH)1.5]·0.5H2O (I) and Na[NpO2(OH)2] (II) were synthesized in aqueous NaOH solutions at T = 80 °C, and their crystal structures were determined to be monoclinic, P21, Z = 2, a = 5.9859(2), b = 10.1932(3), c = 12.1524(4) Å, ß = 98.864(1)°, V = 732.63(4) Å3 for (I) and orthorhombic, P212121, Z = 4, a = 5.856(7), b = 7.621(9), c = 8.174(9) Å, V = 364.8(7) Å3 for (II). By combining the detailed structural information with results from systematic solubility investigations, a comprehensive chemical and thermodynamic model of the Np(V) behavior in NaCl-NaOH solutions was evaluated. The results reveal a great stability of the ternary Na-Np(V)-OH solid phases that significantly enhances the predominance field of the entire Np(V) redox state to high alkalinity.

2.
RSC Adv ; 12(15): 9478-9493, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35424870

ABSTRACT

The impact of calcium on the solubility, redox behavior, and speciation of the An(iii)-EDTA (An = Pu or Cm) system under reducing, anoxic conditions was investigated through batch solubility experiments, X-ray absorption spectroscopy (XAS), density functional theory (DFT), and time-resolved laser fluorescence spectroscopy (TRLFS). Batch solubility experiments were conducted from undersaturation using Pu(OH)3(am) as the solid phase in contact with 0.1 M NaCl-NaOH-HCl-EDTA-CaCl2 solutions at [EDTA] = 1 mM, pHm = 7.5-9.5, and [CaCl2] ≤20 mM. Additional samples targeted brine systems represented by 3.5 M CaCl2 and WIPP simulated brine. Solubility data in the absence of calcium were well-described by Pu(iii)-EDTA thermodynamic models, thus supporting the stabilization of Pu(iii)-EDTA complexes in solution. Cm(iii)-EDTA TRLFS data suggested the stepwise hydrolysis of An(iii)-EDTA complexes with increasing pH, and current Pu(iii)-EDTA solubility models were reassessed to evaluate the possibility of including Pu(iii)-OH-EDTA complexes and to calculate preliminary formation constants. Solubility data in the presence of calcium exhibited nearly constant log m(Pu)tot, as limited by total ligand concentration, with increasing [CaCl2]tot, which supports the formation of calcium-stabilized Pu(iii)-EDTA complexes in solution. XAS spectra without calcium showed partial oxidation of Pu(iii) to Pu(iv) in the aqueous phase, while calcium-containing experiments exhibited only Pu(iii), suggesting that Ca-Pu(iii)-EDTA complexes may stabilize Pu(iii) over short timeframes (t ≤45 days). DFT calculations on the Ca-Pu(iii)-EDTA system and TRLFS studies on the analogous Ca-Cm(iii)-EDTA system show that calcium likely stabilizes An(iii)-EDTA complexes but can also potentially stabilize An(iii)-OH-EDTA species in solution. This hints towards the possible existence of four major complex types within Ca-An(iii)-EDTA systems: An(iii)-EDTA, An(iii)-OH-EDTA, Ca-An(iii)-EDTA, and Ca-An(iii)-OH-EDTA. While the exact stoichiometry and degree of ligand protonation within these complexes remain undefined, their formation must be accounted for to properly assess the fate and transport of plutonium under conditions relevant to nuclear waste disposal.

3.
Anal Chim Acta ; 1202: 339636, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35341521

ABSTRACT

The recently emerged actinide (An) M4,5-edge high-energy resolution X-ray absorption near-edge structure (HR-XANES) technique has proven to be very powerful for oxidation state studies of actinides. In this work, for the first time, Np M5-edge HR-XANES was applied to study Np sorption on illite. By improving the experimental conditions, notably by operation of the spectrometer under He atmosphere, it was possible to measure Np M5-edge HR-XANES spectra of a sample with ≈ 1 µg Np/g illite (1 ppm). This is 30-2000 times lower than Np loadings on mineral surfaces usually investigated by X-ray absorption spectroscopy. A newly designed cryogenic configuration enabled sample temperatures of 141.2 ± 1.5 K and successfully prevented beam-induced changes of the Np oxidation state. The described approach paves the way for the examination of coupled redox/solid-liquid interface reactions of actinide ions via An M4,5-edge HR-XANES spectroscopy at low metal ion concentrations, which are of specific relevance for contaminated sites and nuclear waste disposal studies.


Subject(s)
X-Ray Absorption Spectroscopy , Clay , Oxidation-Reduction , Temperature , X-Ray Absorption Spectroscopy/methods , X-Rays
4.
Sci Total Environ ; 783: 146993, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-33866175

ABSTRACT

The impact of calcium on the solubility and redox behavior of the Pu(IV)-EDTA system was investigated using a combination of undersaturation solubility studies and advanced spectroscopic techniques. Batch solubility experiments were conducted in 0.1 M NaCl-NaOH-HCl-EDTA-CaCl2 solutions at constant [EDTA] = 1∙10-3 M, 1 ≤ pHm ≤ 11, and 1∙10-3 M ≤ [CaCl2] ≤ 2∙10-2 M. Additional samples targeted brine systems represented by 3.5 M CaCl2 and WIPP simulated brine. Redox conditions were buffered with hydroquinone (pe + pH ≈ 9.5) with selected samples prepared in the absence of any redox buffer. All experiments were performed at T = 22 °C under Ar atmosphere. In-situ X-ray absorption spectroscopy indicated that PuO2(ncr,hyd) was the solubility-controlling phase during the lifetime of all experiments and that aqueous plutonium was present in the +IV oxidation state across all experimental conditions except at pHm ≈ 1, where a small fraction of Pu(III) was also identified. Current thermodynamic models overestimate Pu(IV)-EDTA solubility in the absence of calcium by approximately 1-1.5 log10-units and do not describe the nearly pH-independent, increased solubility observed with increased calcium concentrations. The ternary Pu(IV)-OH-EDTA system without calcium was reevaluated using solubility data obtained in this work and reported in the literature. An updated thermodynamic model including the complexes Pu(OH)(EDTA)-, Pu(OH)2(EDTA)2-, and Pu(OH)3(EDTA)3- was derived. Solubility data collected in the presence of calcium follows a pH-independent trend (log m(Pu)tot vs. pHm), which can only be explained by assuming the formation of a quaternary complex, tentatively defined as CaPu(OH)4(EDTA)2-, in solution. The significant enhancement of plutonium solubility observed in the investigated brine systems supports the formation of a quaternary complex that is not outcompeted by Ca(EDTA)2-, even in concentrated CaCl2 solutions. Although the exact stoichiometry of the complex may need to be revisited, this new quaternary complex has a pronounced impact on plutonium predominance diagrams over a broad range of pH, pe, and calcium concentrations that are relevant to nuclear waste disposal.

5.
Inorg Chem ; 59(1): 8-22, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31834788

ABSTRACT

Neptunium(V) and uranium(VI) are precipitated from an aqueous potassium-sodium-containing carbonate-rich solution, and the solid phases are investigated. U/Np M4,5-edge high-energy resolution X-ray absorption near edge structure (HR-XANES) spectroscopy and Np 3d4f resonant inelastic X-ray scattering (3d4f RIXS) are applied in combination with thermodynamic calculations, U/Np L3-edge XANES, and extended X-ray absorption fine structure (EXAFS) studies to analyze the local atomic coordination and oxidation states of uranium and neptunium. The XANES/HR-XANES analyses are supported by ab initio quantum-chemical computations with the finite difference method near-edge structure code (FDMNES). The solid precipitates are also investigated with powder X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results strongly suggest that K[NpVO2CO3](cr), K3[NpVO2(CO3)2](cr), and K3Na[UVIO2(CO3)3](cr) are the predominant neptunium and uranium solid phases formed. Despite the 100 times lower initial neptunium(V) concentration at pH 10.5 and oxic conditions, neptunium(V)-rich phases predominately precipitate. The prevailing formation of neptunium(V) over uranium(VI) solids demonstrates the high structural stability of neptunium(V) carbonates containing potassium. It is illustrated that the Np M5-edge HR-XANES spectra are sensitive to changes of the Np-O axial bond length for neptunyl(V/VI).

6.
Chem Commun (Camb) ; 54(91): 12824-12827, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30379154

ABSTRACT

Pu L3 HR-XANES and FEFF9 computations provide evidence for band-like 6d states in colloidal Pu contrasting to narrow 6d states in molecular Pu(iv). Pu L3 HR-XANES is valuable for bond length estimation in plutonyl, whereas Pu M5 HR-XANES is an advanced tool for analysing Pu redox states and 5f unoccupied density of states.

7.
Inorg Chem ; 56(22): 13982-13990, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29087699

ABSTRACT

Pu(III), Pu(IV), and a higher oxidation state of Pu, likely Pu(VI), are for the first time characterized simultaneously present in a borosilicate glass using Pu M5 edge high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We illustrate that the method can be very efficiently used to determine Pu oxidation states, which control the solubility limit of Pu in a glass matrix. HR-XANES results show that the addition of excess Si3N4 is not sufficient for complete reduction of Pu to Pu(III), which has a relatively high solubility limit (9-22 wt % Pu) due to its network-modifying behavior in glasses. We provide evidence that the initially added Pu(VI) might be partly preserved during vitrification at 1200/1400 °C in Ar atmosphere. Pu(VI) could be very advantageous for vitrification of Pu-rich wastes, since it might reach solubility limits of 40 wt % comparable to U(VI).

8.
Environ Sci Technol ; 45(17): 7267-74, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21755920

ABSTRACT

Due to their redox reactivity, surface sorption characteristics, and ubiquity as corrosion products or as minerals in natural sediments, iron(II)-bearing minerals control to a large extent the environmental fate of actinides. Pu-L(III)-edge XANES and EXAFS spectra were used to investigate reaction products of aqueous (242)Pu(III) and (242)Pu(V) reacted with magnetite, mackinawite, and chukanovite under anoxic conditions. As Pu concentrations in the liquid phase were rapidly below detection limit, oxidation state and local structure of Pu were determined for Pu associated with the solid mineral phase. Pu(V) was reduced in the presence of all three minerals. A newly identified, highly specific Pu(III)-sorption complex formed with magnetite. Solid PuO(2) phases formed in the presence of mackinawite and chukanovite; in the case of chukanovite, up to one-third of plutonium was also present as Pu(III). This highlights the necessity to consider, under reducing anoxic conditions, Pu(III) species in addition to tetravalent PuO(2) for environmental risk assessment. Our results also demonstrate the necessity to support thermodynamic calculations with spectroscopic data.


Subject(s)
Ferric Compounds/chemistry , Ferrosoferric Oxide/chemistry , Ferrous Compounds/chemistry , Plutonium/chemistry , Radioactive Pollutants/chemistry , Adsorption , Oxidation-Reduction , Thermodynamics , X-Ray Absorption Spectroscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...