Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 28(1): 54-71, 2022 01.
Article in English | MEDLINE | ID: mdl-34669228

ABSTRACT

Rapid climate change is placing many marine species at risk of local extinction. Recent studies show that epigenetic mechanisms (e.g. DNA methylation, histone modifications) can facilitate both within and transgenerational plasticity to cope with changing environments. However, epigenetic reprogramming (erasure and re-establishment of epigenetic marks) during gamete and early embryo development may hinder transgenerational epigenetic inheritance. Most of our knowledge about reprogramming stems from mammals and model organisms, whereas the prevalence and extent of reprogramming among non-model species from wild populations is rarely investigated. Moreover, whether reprogramming dynamics are sensitive to changing environmental conditions is not well known, representing a key knowledge gap in the pursuit to identify mechanisms underlying links between parental exposure to changing climate patterns and environmentally adapted offspring phenotypes. Here, we investigated epigenetic reprogramming (DNA methylation/hydroxymethylation) and gene expression across gametogenesis and embryogenesis of marine stickleback (Gasterosteus aculeatus) under three ocean warming scenarios (ambient, +1.5 and +4°C). We found that parental acclimation to ocean warming led to dynamic and temperature-sensitive reprogramming throughout offspring development. Both global methylation/hydroxymethylation and expression of genes involved in epigenetic modifications were strongly and differentially affected by the increased warming scenarios. Comparing transcriptomic profiles from gonads, mature gametes and early embryonic stages showed sex-specific accumulation and temperature sensitivity of several epigenetic actors. DNA methyltransferase induction was primarily maternally inherited (suggesting maternal control of remethylation), whereas induction of several histone-modifying enzymes was shaped by both parents. Importantly, massive, temperature-specific changes to the epigenetic landscape occurred in blastula, a critical stage for successful embryo development, which could, thus, translate to substantial consequences for offspring phenotype resilience in warming environments. In summary, our study identified key stages during gamete and embryo development with temperature-sensitive reprogramming and epigenetic gene regulation, reflecting potential 'windows of opportunity' for adaptive epigenetic responses under future climate change.


Subject(s)
Smegmamorpha , Animals , Embryonic Development/genetics , Epigenesis, Genetic , Female , Gametogenesis/genetics , Gene Expression , Male , Oceans and Seas , Smegmamorpha/genetics , Temperature
2.
Genes (Basel) ; 10(9)2019 09 10.
Article in English | MEDLINE | ID: mdl-31509985

ABSTRACT

Histone methylation patterns are important epigenetic regulators of mammalian development, notably through stem cell identity maintenance by chromatin remodeling and transcriptional control of pluripotency genes. But, the implications of histone marks are poorly understood in distant groups outside vertebrates and ecdysozoan models. However, the development of the Pacific oyster Crassostrea gigas is under the strong epigenetic influence of DNA methylation, and Jumonji histone-demethylase orthologues are highly expressed during C. gigas early life. This suggests a physiological relevance of histone methylation regulation in oyster development, raising the question of functional conservation of this epigenetic pathway in lophotrochozoan. Quantification of histone methylation using fluorescent ELISAs during oyster early life indicated significant variations in monomethyl histone H3 lysine 4 (H3K4me), an overall decrease in H3K9 mono- and tri-methylations, and in H3K36 methylations, respectively, whereas no significant modification could be detected in H3K27 methylation. Early in vivo treatment with the JmjC-specific inhibitor Methylstat induced hypermethylation of all the examined histone H3 lysines and developmental alterations as revealed by scanning electronic microscopy. Using microarrays, we identified 376 genes that were differentially expressed under methylstat treatment, which expression patterns could discriminate between samples as indicated by principal component analysis. Furthermore, Gene Ontology revealed that these genes were related to processes potentially important for embryonic stages such as binding, cell differentiation and development. These results suggest an important physiological significance of histone methylation in the oyster embryonic and larval life, providing, to our knowledge, the first insights into epigenetic regulation by histone methylation in lophotrochozoan development.


Subject(s)
Crassostrea/genetics , Gene Expression Regulation, Developmental , Histones/metabolism , Protein Processing, Post-Translational , Animals , Crassostrea/growth & development , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/ultrastructure , Epigenesis, Genetic , Histone Code , Histones/genetics , Methylation
3.
Gene ; 691: 56-69, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30615915

ABSTRACT

During gametogenesis and embryonic development, precise regulation of gene expression, across cell/tissue types and over time, is crucial. In vertebrates, transcription is partly regulated by histone lysine acetylation/deacetylation, an epigenetic mechanism mediated by lysine acetyltransferases (KAT) and histone deacetylases (HDAC). Well characterized in mammals, these enzymes are unknown in fish embryology outside of zebrafish development. Here, we characterized putative KAT and HDAC enzymes in the self-fertilizing mangrove rivulus fish, Kryptolebias marmoratus, a species that naturally self-fertilizes and can produce isogenic lineages. This unique feature provides an opportunity to elucidate the role of epigenetic mechanisms as a source of phenotypic plasticity. In this study, twenty-seven KAT and seventeen HDAC genes have been identified. Their conserved domains and their phylogenetic analysis suggest conservation of the enzymes' activity in our species, relative to other vertebrates in which the enzymes have been characterized. Furthermore, the dynamics of KAT and HDAC mRNA expression during embryogenesis, in adult gonads and brains, argues for a putative biological function in early and late development as well as in male/hermaphrodite gametogenesis and adult neurogenesis. Our study aimed to provide a basis about the epigenetic actors putatively regulating histone acetylation in a self-fertilizing fish, the mangrove rivulus. Unique among vertebrates, the great number of isogenic lineages occurring naturally in this species allows exploring the contribution of the enzymes regulating histone acetylation only to reproduction and development in teleost fishes, which are very powerful models in fundamental and applied researches that include aquaculture, ecotoxicology, behaviour, evolution, sexual determinism and human diseases.


Subject(s)
Cyprinodontiformes/growth & development , Gene Expression Profiling/methods , Histone Deacetylases/genetics , Lysine Acetyltransferases/genetics , Animals , Cyprinodontiformes/genetics , Epigenesis, Genetic , Evolution, Molecular , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Multigene Family , Phylogeny
4.
Gene ; 687: 173-187, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30458291

ABSTRACT

Histone modifications such as methylation of key lysine residues play an important role in embryonic development in a variety of organisms such as of Pacific oysters, zebrafish and mice. The action of demethylase ("erasers") and methyltransferase ("writers") enzymes regulates precisely the methylation status of each lysine residue. However, despite fishes being very useful model organisms in medicine, evolution and ecotoxicology, most studies have focused on mammalian and plant model organisms, and mechanisms underlying regulation of histones are unknown in fish development outside of zebrafish. Here, putative histone lysine demethylases (Kdm) and methyltransferases (Kmt) were identified in an isogenic lineage of the self-fertilizing hermaphroditic vertebrate, the mangrove rivulus fish, Kryptolebias marmoratus. Evolutionary relationships with other animal demethylases and methyltransferases were examined, and expression patterns during embryonic development and in adult tissues were characterized. Twenty-five Kdm orthologues (Jarid2, Jmjd1c, Jmjd4, Jmjd6, Jmjd7, Jmjd8, Kdm1a, Kdm1b, Kdm2a, Kdm2b, Kdm3b, Kdm4a, Kdm4b, Kdm4c, Kdm5a, Kdm5b, Kdm5c, Kdm6a, Kdm6b, Kdm7a, Kdm8, Kdm9, UTY, Phf2 and Phf8) and forty-eight Kmt orthologues (Ezh1, Ezh2, Setd2, Nsd1, Nsd2, Nsd3, Ash1l, Kmt2e, Setd5, Prdm1, Prdm2, Prdm4, Prdm5, Prdm6, Prdm8, Prdm9, Prdm10, Prdm11, Prdm12, Prdm13, Prdm14, Prdm15, Prdm16, Setd3, Setd4, Setd6, Setd1a, Setd1b, Kmt2a, Kmt2b, Kmt2c, Kmt2d, Kmt5a, Kmt5b, Ehmt1, Ehmt2, Suv39h1, Setmar, Setdb1, Setdb2, Smyd1, Smyd2, Smyd3, Smyd4, Smyd5, Setd7, Setd9, Dot1l) were discovered. Expression patterns of both Kdm and Kmt were variable during embryonic development with a peak in gastrula stage and a reduction in later embryogenesis. Expression of both Kdm and Kmt was higher in male brains compared to hermaphrodite brains whereas specific expression patterns of Kdm and Kmt were observed in the hermaphrodite ovotestes and male testes, respectively. Putative histone demethylases (Kdm) and methyltransferases (Kmt) were for the first time characterized in a teleost besides zebrafish, the mangrove rivulus. Their domain conservation and expression profiles suggest that they might play important roles during development, gametogenesis and neurogenesis, which raises questions about epigenetic regulation of these processes by histone lysine methylation in K. marmoratus. Due to its peculiar mode of reproduction and the natural occurrence of isogenic lineages, this new model species is of great interest for understanding epigenetic contributions to the regulation of development and reproduction.


Subject(s)
Cyprinodontiformes/genetics , DNA Methylation , Epigenesis, Genetic , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Histones/metabolism , Reproduction , Animals , Cyprinodontiformes/growth & development , Cyprinodontiformes/metabolism , Fish Proteins/metabolism , Multigene Family
5.
Ecol Evol ; 8(12): 6016-6033, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29988456

ABSTRACT

In addition to genetic variation, epigenetic mechanisms such as DNA methylation might make important contributions to heritable phenotypic diversity in populations. However, it is often difficult to disentangle the contributions of genetic and epigenetic variation to phenotypic diversity. Here, we investigated global DNA methylation and mRNA expression of the methylation-associated enzymes during embryonic development and in adult tissues of one natural isogenic lineage of mangrove rivulus fish, Kryptolebias marmoratus. Being the best-known self-fertilizing hermaphroditic vertebrate affords the opportunity to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. Using the LUminometric Methylation Assay (LUMA), we described variable global DNA methylation at CpG sites in adult tissues, which differed significantly between hermaphrodite ovotestes and male testes (79.6% and 87.2%, respectively). After fertilization, an immediate decrease in DNA methylation occurred to 15.8% in gastrula followed by re-establishment to 70.0% by stage 26 (liver formation). Compared to zebrafish, at the same embryonic stages, this reprogramming event seems later, deeper, and longer. Furthermore, genes putatively encoding DNA methyltransferases (DNMTs), Ten-Eleven Translocation (TET), and MeCP2 proteins showed specific regulation in adult gonad and brain, and also during early embryogenesis. Their conserved domains and expression profiles suggest that these proteins play important roles during reproduction and development. This study raises questions about mangrove rivulus' peculiar reprogramming period in terms of epigenetic transmission and physiological adaptation of individuals to highly variable environments. In accordance with the general-purpose genotype model, epigenetic mechanisms might allow for the expression of diverse phenotypes among genetically identical individuals. Such phenotypes might help to overcome environmental challenges, making the mangrove rivulus a valuable vertebrate model for ecological epigenetic studies. The mangrove rivulus, Kryptolebias marmoratus, is the best-known self-fertilizing hermaphroditic vertebrate that allows to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. The reprogramming event is later, more dramatic and longer than in other described vertebrates. High evolutionary conservation and expression patterns of DNMT, TET, and MeCP2 proteins in K. marmoratus suggest biological roles for each member in gametogenesis and development.

6.
Environ Sci Pollut Res Int ; 24(4): 3900-3911, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27905044

ABSTRACT

Lessonia spicata is a key dominant species along the Pacific coast of South America, providing a habitat for many organisms. However, this role can be affected by abiotic stress, such as metals. To counteract the toxic effect, L. spicata, among other seaweeds, releases exudates that bind metals. In this study, tolerances to copper of organisms related to the kelp forest (spores of Ulva lactuca (Chlorophyceae) and L. spicata (Phaeophyceae) and Zoea I of Taliepus dentatus (Milne-Edwards, Crustacea)) were studied; then, exudates are assessed by their protective effect. Exudates increase the 48-h 50% effective concentration (EC50) of the germination of spores from 8 to 23 µg Cu L-1 for U. lactuca and from 119 to 213 µg Cu L-1 for L. spicata and the survival of the larvae Zoea I 48-h 50% of lethal concentration (LC50) from 144 to 249 µg Cu L-1. Results indicated that exudates had a protective effect. Each species is specifically sensitive to copper. Crab larvae Zoea I were able to support higher doses, and exposure before hatching increased their tolerance.


Subject(s)
Copper/toxicity , Phaeophyceae/drug effects , Animals , Brachyura/drug effects , Larva/drug effects , Water Pollutants, Chemical/toxicity
7.
Aquat Toxicol ; 180: 247-257, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27750118

ABSTRACT

17-α-ethinylestradiol (EE2) is one of the most potent endocrine disrupting compounds found in the aquatic environments, and is known to strongly alter fish reproduction and fitness. While the effects of direct exposure to EE2 are well studied in adults, there is an increasing need to assess the impacts of exposure during early life stages. Sensitivity to pollutants during this critical window can potentially affect the phenotype later in life or in subsequent generations. This study investigated phenotypic outcome of early-life exposure to 17-α-ethinylestradiol during development and in adults of the mangrove rivulus, Kryptolebias marmoratus. Being one of the only two known self-fertilizing hermaphroditic vertebrates, this fish makes it possible to work with genetically identical individuals. Therefore, using rivulus makes it possible to examine, explicitly, the phenotypic effects of environmental variance while eliminating the effects of genetic variance. Genetically identical rivulus were exposed for the first 28days post hatching (dph) to 0, 4 or 120ng/L of EE2, and then were reared in uncontaminated water until 168dph. Growth, egg laying and steroid hormone levels (estradiol, cortisol, 11-ketotestosterone, testosterone) were measured throughout development. Exposed fish showed a reduction in standard length directly after exposure (28dph), which was more pronounced in the 120ng/L group. This was followed by compensatory growth when reared in clean water: all fish recovered a similar size as controls by 91dph. There was no difference in the age at maturity and the proportions of mature, non-mature and male individuals at 168dph. At 4ng/L, fish layed significantly fewer eggs than controls, while, surprisingly, reproduction was not affected at 120ng/L. Despite a decrease in fecundity at 4ng/L, there were no changes in hormones levels at the lower concentration. In addition, there were no significant differences among treatments immediately after exposure. However, 120ng/L exposed fish exhibited significantly higher levels of testosterone at 91 and 168dph and 11-ketotestosterone at 168dph, up to 140days after exposure. These results indicate that early-life exposure to EE2 had both immediate and delayed impacts on the adult's phenotype. While fish growth was impaired during exposure, compensatory growth, reduced fecundity and modification of the endocrine status were observed after exposure ceased.


Subject(s)
Cyprinodontiformes/physiology , Endocrine Disruptors/toxicity , Ethinyl Estradiol/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Dose-Response Relationship, Drug , Endocrine System/drug effects , Female , Male , Phenotype , Reproduction/drug effects , Self-Fertilization , Toxicity Tests
8.
Mar Genomics ; 19: 23-30, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25224965

ABSTRACT

In many groups, epigenetic mechanisms influence developmental gene regulation under environmental inputs. The Pacific oyster Crassostrea gigas belongs to lophotrochozoans and its larval development is highly dependent on temperature, but the role of epigenetic mechanisms in this context is unknown despite high levels of the recently characterized Jumonji histone demethylase (JHDM) orthologues (Cg_Jumonji) suggesting a physiological relevance of histone methylation in the oyster development. Because in other species alterations of the histone methylation pattern have deleterious outcomes, we investigated the influence of temperature during the oyster larval life on histone methylation and JHDM expression. To shed light on this point, oyster embryonic and early larval development experiments were carried out at different temperatures (18 °C, 25 °C and 32 °C). Histone methylation levels were investigated using fluorescent ELISA at 6 and 24h post-fertilization. When compared to the 25 °C group, at 18 °C H3K4, H3K9 and H3K27 residues were hypomethylated at 6h post fertilization (hpf) and hypermethylated at 24 hpf. In contrast, at 32 °C, 6hpf animals present a dramatic hypermethylation (ca. 4-fold) of all examined residues, which is minored but sustained at 24 hpf. RT-qPCR investigations of the mRNA expression of the nine oyster JHDMs, showed gene- and stage-specific temperature sensitivities throughout the early life of oysters. This study provides evidence of the biological significance of histone methylation during development in a lophotrochozoan species. Our results also indicate that temperature influences histone methylation, possibly through the expression level of putative actors of its regulation, which might participate in developmental control. To our knowledge, this is the first report indicating a direct relationship between an epigenetic mark and an environmental parameter in marine molluscs. Such investigations could help better understand the molecular mechanisms of development and adaptation in lophotrochozoans.


Subject(s)
Crassostrea/embryology , Crassostrea/enzymology , Gene Expression Regulation, Developmental/physiology , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , RNA, Messenger/metabolism , Temperature , Animals , Enzyme-Linked Immunosorbent Assay , Jumonji Domain-Containing Histone Demethylases/genetics , Methylation , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
9.
Gene ; 538(1): 164-75, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24406622

ABSTRACT

Jumonji (Jmj) proteins are histone demethylases, which control the identity of stem cells. Jmj genes were characterized from plants to mammals where they have been implicated in the epigenetic regulation of development. Despite the Pacific oyster Crassostrea gigas representing one of the most important aquaculture resources worldwide, the molecular mechanisms governing the embryogenesis and reproduction of this lophotrochozoan species remain poorly understood. However, annotations in the C. gigas EST library suggested the presence of putative Jumonji genes, raising the question of the conservation of this family of histone demethylases in the oyster. Using Primer walking, 5'-RACE PCR and in silico analyses, we characterized nine Jumonji orthologues in the oyster, called Cg-Jmj, bearing conserved domains critical for putative histone demethylase activity. Phylogenic analyses revealed that oyster Jumonji cluster into two distinct groups: 'single-domain Jmj' and 'multi-domain Jmj', and define 8 subgroups corresponding to each cognate orthologues in metazoans. RT-qPCR investigations showed specific regulations of Cg-Jmj mRNAs during the early development and along the reproduction cycle. Furthermore, in situ and in toto hybridizations indicate that oyster Jumonji genes are transcribed mostly within the gonad in adult oysters whereas they display a ubiquitous expression during embryonic and larval development. Our study demonstrates the presence of nine Jumonji orthologues in the oyster C. gigas. Their domain conservation and their expression profile suggest an implication during reproduction and development, questioning about the epigenetic regulation by histone methylation in lophotrochozoans.


Subject(s)
Crassostrea/genetics , Evolution, Molecular , Gametogenesis , Jumonji Domain-Containing Histone Demethylases/genetics , Animals , Base Sequence , Conserved Sequence , Crassostrea/embryology , Crassostrea/enzymology , Crassostrea/physiology , Gene Expression Regulation, Developmental , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Molecular Sequence Data , Multigene Family , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Mar Biotechnol (NY) ; 15(6): 739-53, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23877618

ABSTRACT

In vertebrates, epigenetic modifications influence gene transcription, and an appropriate DNA methylation is critical in development. Indeed, a precise temporal and spatial pattern of early gene expression is mandatory for a normal embryogenesis. However, such a regulation and its underlying mechanisms remain poorly understood in more distant organisms such as Lophotrochozoa. Thus, despite DNA in the oyster genome being methylated, the role of DNA methylation in development is unknown. To clarify this point, oyster genomic DNA was examined during early embryogenesis and found differentially methylated. Reverse transcriptase quantitative polymerase chain reaction indicated stage-specific levels of transcripts encoding DNA-methyltransferase (DNMT) and methyl-binding domain proteins. In addition, as highlighted by electronic microscopy and immunohistochemistry, the DNMT inhibitor 5-aza-cytidine induced alterations in the quantity and the localisation of methylated DNA and severe dose-dependent development alterations and was lethal after zygotic genome reinitiation. Furthermore, methyl-DNA-immunoprecipitation-quantitative polymerase chain reaction revealed that the transcription level of most of the homeobox gene orthologues examined, but not of the other early genes investigated, was inversely correlated with their specific DNA methylation. Altogether, our results demonstrate that DNA methylation influences gene expression in Crassostrea gigas and is critical for oyster development, possibly by specifically controlling the transcription level of homeobox orthologues. These findings provide evidence for the importance of epigenetic regulation of development in Lophotrochozoans and bring new insights into the early life of C. gigas, one of the most important aquaculture resources worldwide.


Subject(s)
DNA Methylation/physiology , DNA Modification Methylases/genetics , Epigenesis, Genetic/physiology , Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/metabolism , Ostreidae/embryology , Analysis of Variance , Animals , Aquaculture , Azacitidine/toxicity , DNA Methylation/drug effects , DNA Methylation/genetics , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Epigenesis, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/genetics , Immunohistochemistry , Immunoprecipitation , Microscopy, Electron, Scanning , Ostreidae/genetics , Reverse Transcriptase Polymerase Chain Reaction
11.
PLoS One ; 6(12): e27833, 2011.
Article in English | MEDLINE | ID: mdl-22174750

ABSTRACT

Angiotensin-converting enzyme (ACE) is a highly conserved metallopeptidase. In mammals, the somatic isoform governs blood pressure whereas the germinal isoform (tACE) is required for fertility. In Ecdysozoans, ACE-like enzymes are implicated in reproduction. Despite ACE orthologues being present from bacteria to humans, their function(s) remain(s) unknown in distant organisms such as Lophotrochozoans. In silico analysis of an oyster (Crassostrea gigas) EST library suggested the presence of an ACE orthologue in molluscs. Primer walking and 5'-RACE revealed that the 1.9 kb cDNA encodes CgACE, a 632 amino acid protein displaying a conserved single active site and a putative C-terminal transmembrane anchor, thus resembling human tACE, as supported by molecular modelling. FRET activity assays and Maldi-TOF spectrometry indicated that CgACE is a functional dipeptidyl-carboxypeptidase which is active on Angiotensin I and sensitive to ACE inhibitors and chloride ion concentration. Immunocytochemistry revealed that, as its human counterpart, recombinant CgACE is synthesised as a transmembrane enzyme. RT-qPCR, in-situ hybridization and immunohistochemistry shed light on a tissue, and development stage, specific expression pattern for CgACE, which is increased in the gonad during spermatogenesis. The use of ACE inhibitors in vivo indicates that the dipeptidase activity of CgACE is crucial for the oyster fertilization. Our study demonstrates that a transmembrane active ACE is present in the oyster Crassostrea gigas, and for the first time ascribes a functional role for ACE in Lophotrochozoans. Its biological function in reproduction is conserved from molluscs to humans, a finding of particular evolutionary interest especially since oysters represent the most important aquaculture resource worldwide.


Subject(s)
Ostreidae/enzymology , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Sequence Homology, Amino Acid , Amino Acid Sequence , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Fertility/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gonads/cytology , Gonads/drug effects , Gonads/enzymology , Humans , Models, Molecular , Molecular Sequence Data , Ostreidae/cytology , Ostreidae/drug effects , Peptidyl-Dipeptidase A/genetics , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...