Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Science ; 380(6645): 619-624, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37141315

ABSTRACT

Major advances over the past decade in the field of ancient DNA are providing access to past paleogenomic diversity, but the diverse functions and biosynthetic capabilities of this growing paleome remain largely elusive. We investigated the dental calculus of 12 Neanderthals and 52 anatomically modern humans ranging from 100,000 years ago to the present and reconstructed 459 bacterial metagenome-assembled genomes. We identified a biosynthetic gene cluster shared by seven Middle and Upper Paleolithic individuals that allows for the heterologous production of a class of previously unknown metabolites that we name "paleofurans." This paleobiotechnological approach demonstrates that viable biosynthetic machinery can be produced from the preserved genetic material of ancient organisms, allowing access to natural products from the Pleistocene and providing a promising area for natural product exploration.


Subject(s)
Biological Products , Furans , Genome, Bacterial , Hominidae , Neanderthals , Animals , Humans , Biological Products/metabolism , Hominidae/genetics , Metagenome , Neanderthals/genetics , Furans/metabolism , DNA, Ancient
2.
Mol Biol Evol ; 39(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36472532

ABSTRACT

Host-associated microbiomes are essential for a multitude of biological processes. Placed at the contact zone between external and internal environments, the little-studied oral microbiome has important roles in host physiology and health. Here, we investigate the roles of host evolutionary relationships and ecology in shaping the oral microbiome in three closely related gorilla subspecies (mountain, Grauer's, and western lowland gorillas) using shotgun metagenomics of 46 museum-preserved dental calculus samples. We find that the oral microbiomes of mountain gorillas are functionally and taxonomically distinct from the other two subspecies, despite close evolutionary relationships and geographic proximity with Grauer's gorillas. Grauer's gorillas show intermediate bacterial taxonomic and functional, and dietary profiles. Altitudinal differences in gorilla subspecies ranges appear to explain these patterns, suggesting a close connection between dental calculus microbiomes and the environment, likely mediated through diet. This is further supported by the presence of gorilla subspecies-specific phyllosphere/rhizosphere taxa in the oral microbiome. Mountain gorillas show a high abundance of nitrate-reducing oral taxa, which may promote adaptation to a high-altitude lifestyle by modulating blood pressure. Our results suggest that ecology, rather than evolutionary relationships and geographic distribution, shape the oral microbiome in these closely related species.


Subject(s)
Hominidae , Microbiota , Animals , Gorilla gorilla , Phylogeny , Dental Calculus , Microbiota/genetics
3.
mSystems ; 6(6): e0131521, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34931883

ABSTRACT

Like modern metagenomics, ancient metagenomics is a highly data-rich discipline, with the added challenge that the DNA of interest is degraded and, depending on the sample type, in low abundance. This requires the application of specialized measures during molecular experiments and computational analyses. Furthermore, researchers often work with finite sample sizes, which impedes optimal experimental design and control of confounding factors, and with ethically sensitive samples necessitating the consideration of additional guidelines. In September 2020, early career researchers in the field of ancient metagenomics met (Standards, Precautions & Advances in Ancient Metagenomics 2 [SPAAM2] community meeting) to discuss the state of the field and how to address current challenges. Here, in an effort to bridge the gap between ancient and modern metagenomics, we highlight and reflect upon some common misconceptions, provide a brief overview of the challenges in our field, and point toward useful resources for potential reviewers and newcomers to the field.

5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972424

ABSTRACT

The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.


Subject(s)
Biological Evolution , Ecology/methods , Hominidae/microbiology , Metagenome/genetics , Microbiota/genetics , Mouth/microbiology , Africa , Animals , Bacteria/classification , Bacteria/genetics , Biofilms , Dental Plaque/microbiology , Geography , Gorilla gorilla/microbiology , Hominidae/classification , Humans , Pan troglodytes/microbiology , Phylogeny
6.
PeerJ ; 9: e10947, 2021.
Article in English | MEDLINE | ID: mdl-33777521

ABSTRACT

The broadening utilisation of ancient DNA to address archaeological, palaeontological, and biological questions is resulting in a rising diversity in the size of laboratories and scale of analyses being performed. In the context of this heterogeneous landscape, we present an advanced, and entirely redesigned and extended version of the EAGER pipeline for the analysis of ancient genomic data. This Nextflow pipeline aims to address three main themes: accessibility and adaptability to different computing configurations, reproducibility to ensure robust analytical standards, and updating the pipeline to the latest routine ancient genomic practices. The new version of EAGER has been developed within the nf-core initiative to ensure high-quality software development and maintenance support; contributing to a long-term life-cycle for the pipeline. nf-core/eager will assist in ensuring that a wider range of ancient DNA analyses can be applied by a diverse range of research groups and fields.

7.
Sci Data ; 8(1): 31, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500403

ABSTRACT

Ancient DNA and RNA are valuable data sources for a wide range of disciplines. Within the field of ancient metagenomics, the number of published genetic datasets has risen dramatically in recent years, and tracking this data for reuse is particularly important for large-scale ecological and evolutionary studies of individual taxa and communities of both microbes and eukaryotes. AncientMetagenomeDir (archived at https://doi.org/10.5281/zenodo.3980833 ) is a collection of annotated metagenomic sample lists derived from published studies that provide basic, standardised metadata and accession numbers to allow rapid data retrieval from online repositories. These tables are community-curated and span multiple sub-disciplines to ensure adequate breadth and consensus in metadata definitions, as well as longevity of the database. Internal guidelines and automated checks facilitate compatibility with established sequence-read archives and term-ontologies, and ensure consistency and interoperability for future meta-analyses. This collection will also assist in standardising metadata reporting for future ancient metagenomic studies.


Subject(s)
Databases, Genetic , Metagenome , Metagenomics , Humans , Metadata , Publications
8.
Bioscience ; 69(11): 877-887, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31719710

ABSTRACT

Drivers of Late Quaternary megafaunal extinctions are relevant to modern conservation policy in a world of growing human population density, climate change, and faunal decline. Traditional debates tend toward global solutions, blaming either dramatic climate change or dispersals of Homo sapiens to new regions. Inherent limitations to archaeological and paleontological data sets often require reliance on scant, poorly resolved lines of evidence. However, recent developments in scientific technologies allow for more local, context-specific approaches. In the present article, we highlight how developments in five such methodologies (radiocarbon approaches, stable isotope analysis, ancient DNA, ancient proteomics, microscopy) have helped drive detailed analysis of specific megafaunal species, their particular ecological settings, and responses to new competitors or predators, climate change, and other external phenomena. The detailed case studies of faunal community composition, extinction chronologies, and demographic trends enabled by these methods examine megafaunal extinctions at scales appropriate for practical understanding of threats against particular species in their habitats today.

9.
Microbiome ; 7(1): 102, 2019 07 06.
Article in English | MEDLINE | ID: mdl-31279340

ABSTRACT

BACKGROUND: Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates. RESULTS: Metagenomic data was generated from modern and historic calculus samples, and dental plaque metagenomic data was downloaded from the Human Microbiome Project. Microbial composition and functional profile were assessed. Metaproteomic data was obtained from a subset of historic calculus samples. Comparisons between microbial, protein, and metabolomic profiles revealed distinct taxonomic and metabolic functional profiles between plaque, modern calculus, and historic calculus, but not between calculus collected from healthy teeth and periodontal disease-affected teeth. Species co-exclusion was related to biofilm environment. Proteomic profiling revealed that healthy tooth samples contain low levels of bacterial virulence proteins and a robust innate immune response. Correlations between proteomic and metabolomic profiles suggest co-preservation of bacterial lipid membranes and membrane-associated proteins. CONCLUSIONS: Overall, we find that there are systematic microbial differences between plaque and calculus related to biofilm physiology, and recognizing these differences is important for accurate data interpretation in studies comparing dental plaque and calculus.


Subject(s)
Bacteria/classification , Bacterial Physiological Phenomena , Biofilms/growth & development , Dental Calculus/microbiology , Dental Plaque/microbiology , Microbiota/physiology , Tooth/microbiology , Bacterial Proteins/genetics , Bone and Bones/microbiology , DNA, Ancient/analysis , DNA, Bacterial/genetics , Dental Calculus/history , Female , History, Ancient , Humans , Male , Metagenomics , Periodontal Diseases/microbiology , Proteomics
10.
Sci Rep ; 8(1): 9822, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29959351

ABSTRACT

Dental calculus (calcified dental plaque) is prevalent in archaeological skeletal collections and is a rich source of oral microbiome and host-derived ancient biomolecules. Recently, it has been proposed that dental calculus may provide a more robust environment for DNA preservation than other skeletal remains, but this has not been systematically tested. In this study, shotgun-sequenced data from paired dental calculus and dentin samples from 48 globally distributed individuals are compared using a metagenomic approach. Overall, we find DNA from dental calculus is consistently more abundant and less contaminated than DNA from dentin. The majority of DNA in dental calculus is microbial and originates from the oral microbiome; however, a small but consistent proportion of DNA (mean 0.08 ± 0.08%, range 0.007-0.47%) derives from the host genome. Host DNA content within dentin is variable (mean 13.70 ± 18.62%, range 0.003-70.14%), and for a subset of dentin samples (15.21%), oral bacteria contribute > 20% of total DNA. Human DNA in dental calculus is highly fragmented, and is consistently shorter than both microbial DNA in dental calculus and human DNA in paired dentin samples. Finally, we find that microbial DNA fragmentation patterns are associated with guanine-cytosine (GC) content, but not aspects of cellular structure.


Subject(s)
Bacteria/genetics , DNA, Bacterial/analysis , Dental Calculus/genetics , Dentin/metabolism , Metagenomics , Preservation, Biological/methods , DNA, Bacterial/genetics , Dental Calculus/microbiology , Dentin/microbiology , Humans , Microbiota
11.
Sci Rep ; 7(1): 17714, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29255197

ABSTRACT

The population dynamics of the Pleistocene woolly mammoth (Mammuthus primigenius) has been the subject of intensive palaeogenetic research. Although a large number of mitochondrial genomes across Eurasia have been reconstructed, the available data remains geographically sparse and mostly focused on eastern Eurasia. Thus, population dynamics in other regions have not been extensively investigated. Here, we use a multi-method approach utilising proteomic, stable isotope and genetic techniques to identify and generate twenty woolly mammoth mitochondrial genomes, and associated dietary stable isotopic data, from highly fragmentary Late Pleistocene material from central Europe. We begin to address region-specific questions regarding central European woolly mammoth populations, highlighting parallels with a previous replacement event in eastern Eurasia ten thousand years earlier. A high number of shared derived mutations between woolly mammoth mitochondrial clades are identified, questioning previous phylogenetic analysis and thus emphasizing the need for nuclear DNA studies to explicate the increasingly complex genetic history of the woolly mammoth.


Subject(s)
DNA, Mitochondrial/genetics , Mammoths/genetics , Animals , DNA, Ancient/analysis , Europe , Extinction, Biological , Fossils , Genome, Mitochondrial/genetics , Haplotypes/genetics , Phylogeny , Population Dynamics , Proteomics/methods , Sequence Analysis, DNA
12.
Annu Rev Genomics Hum Genet ; 18: 321-356, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28460196

ABSTRACT

Microbial archaeology is flourishing in the era of high-throughput sequencing, revealing the agents behind devastating historical plagues, identifying the cryptic movements of pathogens in prehistory, and reconstructing the ancestral microbiota of humans. Here, we introduce the fundamental concepts and theoretical framework of the discipline, then discuss applied methodologies for pathogen identification and microbiome characterization from archaeological samples. We give special attention to the process of identifying, validating, and authenticating ancient microbes using high-throughput DNA sequencing data. Finally, we outline standards and precautions to guide future research in the field.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , DNA, Ancient/analysis , Metagenomics/methods , Microbiota/genetics , Sequence Analysis, DNA/methods , Archaea/genetics , Archaeology/methods , Bacteria/genetics , Genome, Archaeal , Genome, Bacterial , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...