Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Lab Anim ; 57(6): 650-663, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37647768

ABSTRACT

Pigs are widely used in metabolic research with procedures often requiring general anaesthesia. The aim was to investigate the effect of four different anaesthetic protocols: 1) isoflurane inhalation, 2) propofol infusion, 3) a mixture of tiletamine, zolazepam, medetomidine, ketamine and butorphanol (TZMKB)) and 4) ketamine combined with midazolam and xylazine (KMX)) on selected biomarkers during basal and glucose stimulated conditions. Eight domestic pigs were included in a cross-over design. Plasma concentrations of glucose, insulin, C-peptide, glucagon, cortisol, triglycerides, total cholesterol, aspartate amino transferase and alanine amino transferase, creatinine, urea, fructosamine, albumin, free fatty acids (FFAs) and glycerol were measured at baseline, during 2 h of anaesthesia and during 1 h of recovery. Intravenous glucose tolerance test (IVGTT, 0.5 g glucose/kg) was performed after 1 h of anaesthesia. Glucose disappearance rate and areas under the insulin, C-peptide and glucagon curves from the IVGTT were calculated. All four anaesthetic protocols affected glucose metabolism parameters significantly compared with un-anaesthetised pigs, which was particularly evident during IVGTT and for TZMKB and KMX anaesthesia. Propofol additionally influenced the plasma concentrations of triglycerides, FFAs and glycerol significantly. The remaining circulating biomarkers were largely unaffected by anaesthesia. These data underline the importance of considering the anaesthetic protocol in porcine studies of circulating metabolic biomarkers.


Subject(s)
Anesthetics , Ketamine , Propofol , Swine , Animals , Glucagon , C-Peptide , Glycerol , Anesthesia, General , Anesthetics/pharmacology , Medetomidine , Tiletamine , Glucose , Triglycerides
2.
Sci Rep ; 13(1): 6017, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045950

ABSTRACT

Obesity-related glomerulopathy and diabetic nephropathy (DN) are serious complications to metabolic syndrome and diabetes. The purpose was to study effects of a fat, fructose and cholesterol-rich (FFC) diet with and without salt in order to induce hypertension on kidney function and morphology in Göttingen Minipigs with and without diabetes. Male Göttingen Minipigs were divided into 4 groups: SD (standard diet, n = 8), FFC (FFC diet, n = 16), FFC-DIA (FFC diet + diabetes, n = 14), FFC-DIA + S (FFC diet with extra salt + diabetes, n = 14). Blood and urine biomarkers, glomerular filtration rate (GFR), blood pressure (BP) and resistive index (RI) were evaluated after 6-7 months (T1) and 12-13 months (T2). Histology, electron microscopy and gene expression (excluding FFC-DIA + S) were evaluated at T2. All groups fed FFC-diet displayed obesity, increased GFR and RI, glomerulomegaly, mesangial expansion (ME) and glomerular basement membrane (GBM) thickening. Diabetes on top of FFC diet led to increased plasma glucose and urea and proteinuria and tended to exacerbate the glomerulomegaly, ME and GBM thickening. Four genes (CDKN1A, NPHS2, ACE, SLC2A1) were significantly deregulated in FFC and/or FFC-DIA compared to SD. No effects on BP were observed. Göttingen Minipigs fed FFC diet displayed some of the renal early changes seen in human obesity. Presence of diabetes on top of FFC diet exacerbated the findings and lead to changes resembling the early phases of human DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Swine , Male , Humans , Diabetic Nephropathies/pathology , Swine, Miniature , Kidney/pathology , Obesity/pathology , Glomerular Basement Membrane/pathology , Diabetes Mellitus/pathology
3.
Int J Mol Sci ; 21(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32053994

ABSTRACT

Somapacitan is a long-acting, once-weekly, albumin-binding growth hormone (GH) derivative. The reversible albumin-binding properties leads to prolonged circulation half-life. Here, we investigated and compared somapacitan with human GH on downstream receptor signaling in primary hepatocytes and hepatocellular models and using isothermal titration calorimetry to characterize receptor binding of somapacitan in the presence or absence of human serum albumin (HSA). With non-invasive fluorescence imaging we quantitatively visualize and compare the temporal distribution and examine the tissue-specific growth hormone receptor (GHR) activation at distribution sites. We found that signaling kinetics were slightly more rapid and intense for GH compared with somapacitan. Receptor binding isotherms were characterized by a high and a low affinity interaction site with or without HSA. Using in vivo optical imaging we found prolonged systemically biodistribution of somapacitan compared with GH, which correlated with plasma pharmacokinetics. Ex vivo mouse organ analysis revealed that the temporal fluorescent intensity in livers dosed with somapacitan was significantly increased compared with GH-dosed livers and correlated with the degree of downstream GHR activation. Finally, we show that fluorescent-labeled analogs distributed to the hypertrophic zone in the epiphysis of proximal tibia of hypophysectomized rats and that somapacitan and GH activate the GHR signaling in epiphyseal tissues.


Subject(s)
Human Growth Hormone/analogs & derivatives , Human Growth Hormone/pharmacology , Receptors, Somatotropin/metabolism , Animals , Cells, Cultured , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Human Growth Hormone/pharmacokinetics , Humans , Male , Mice , Mice, Nude , Models, Molecular , Rats, Sprague-Dawley , Tissue Distribution
4.
Int J Obes (Lond) ; 44(2): 447-456, 2020 02.
Article in English | MEDLINE | ID: mdl-31175319

ABSTRACT

BACKGROUND/OBJECTIVES: Cholecystokinin (CCK) is a regulator of appetite and energy intake in man. The aim of this study was to determine the effect of NN9056, a long-acting CCK-1 receptor-selective CCK analogue, on food intake and body weight (BW) in obese Göttingen Minipigs. SUBJECTS/METHODS: Tolerability of NN9056 and acute effects on food intake, pancreas histology, amylase and lipase levels were assessed in lean domestic pigs in doses up to 100 nmol/kg (n = 3-4). Subsequently, obese Göttingen Minipigs were treated subcutaneously (s.c.) once daily for 13 weeks with vehicle, NN9056 low dose (regulated from 5 to 2 nmol/kg) or NN9056 high dose (10 nmol/kg) (n = 7-8). Food intake was measured daily and BW twice weekly. At the end of the treatment period, an intravenous glucose tolerance test (IVGTT) and a 24-h exposure profile was obtained. Data are mean ± SD. RESULTS: The acute studies in domestic pigs showed significant and dose-dependent effect of NN9056 on food intake, acceptable tolerability and no histopathological signs of pancreatitis. Sub-chronic treatment in obese Göttingen Minipigs was also well tolerated and accumulated food intake was significantly lower in both treated groups compared to vehicle, with no significant difference between the dose levels of NN9056 (41.8 ± 12.6, 51.5 ± 13.8 and 86.5 ± 19.5 kg in high-dose, low-dose and vehicle groups, respectively, p = 0.012 and p < 0.0001 for low and high dose vs. vehicle, respectively). Accordingly, there was a weight loss in both treated groups vs. a weight gain in the vehicle group (-7.2 ± 4.6%, -2.3 ± 3.2% and 12.3 ± 3.9% in the high-dose, low-dose and vehicle groups, respectively, p < 0.0001 for both vs. vehicle). IVGTT data were not significantly different between groups. CONCLUSION: NN9056, a long-acting CCK-1 receptor-selective CCK analogue, significantly reduced food intake and BW in obese Göttingen Minipigs after once daily s.c. dosing for 13 weeks.


Subject(s)
Body Weight/drug effects , Cholecystokinin , Eating/drug effects , Energy Intake/drug effects , Obesity/metabolism , Animals , Cholecystokinin/adverse effects , Cholecystokinin/analogs & derivatives , Cholecystokinin/metabolism , Cholecystokinin/pharmacology , Disease Models, Animal , Female , Humans , Protein Binding , Swine , Swine, Miniature
5.
Reprod Toxicol ; 91: 14-26, 2020 01.
Article in English | MEDLINE | ID: mdl-31644949

ABSTRACT

The aim was to investigate embryo-foetal effects of continuous maternal insulin-induced hypoglycaemia extending throughout gestation or until gestation day (GD)17 (typical last day of dosing during pre-clinical evaluation) providing comparator data for safety assessment of longer-acting insulin analogues in non-diabetic rats. Pregnant rats received human insulin (HI)-infusion during gestation until either GD20 or GD17 (HI-GD20; HI-GD17). On GD20, foetal abnormalities and skeletal ossification/mineralisation were evaluated. HI-infusion induced continuous hypoglycaemia. Foetal skeletal and eye malformations (e.g. bent ribs, microphthalmia) were common in both groups. Foetal size and skeletal ossification/mineralisation decreased, particularly with infusion throughout gestation. Concluding, insulin-induced hypoglycaemia during gestation in non-diabetic rats is damaging to embryo-foetal growth and skeletal development, particularly after GD17. Three days without HI-infusion after GD17 allows for some developmental catch-up. Eye development is sensitive to HI-infusion before GD17. These results should serve as a benchmark during pre-clinical safety assessment of longer-acting insulin analogues tested in rats.


Subject(s)
Bone and Bones/abnormalities , Embryonic Development , Eye Abnormalities , Fetal Development , Hypoglycemia/complications , Animals , Blood Glucose/analysis , Embryo, Mammalian/abnormalities , Female , Hypoglycemia/chemically induced , Insulin , Male , Maternal-Fetal Exchange , Osteogenesis , Pregnancy , Rats, Sprague-Dawley
6.
Sci Rep ; 8(1): 5416, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615808

ABSTRACT

In the apolipoprotein E-deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoe tm1sage (Apoe-/-) rats fed either a Western diet or a low-fat control diet with or without gluten, which is known to promote gut microbiota changes, until 20 weeks of age. We hypothesized that the manifestation of atherosclerosis would be more severe in Apoe-/- rats fed the Western high-fat diet, as compared with rats fed the low-fat diet, and that atherosclerosis would be accelerated by gluten. Both Western diet-feeding and gluten resulted in significant changes in gut microbiota, but the microbiota impact of gluten was transient. Compared with Apoe-/- rats fed a low-fat diet, Western diet-fed Apoe-/- rats were heavier and became glucose intolerant with increased levels of oxidative stress. They developed early fatty streak lesions in their aortic sinus, while there was no evidence of atherosclerosis in the thoracic aorta. No conclusions could be made on the impact of gluten on atherosclerosis. Although Western diet-fed Apoe-/- rats exhibited a more human-like LDL dominated blood lipid profile, signs of obesity, type 2 diabetes and cardiovascular disease were modest.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Atherosclerosis/pathology , Diet, Western/adverse effects , Animals , Aorta/drug effects , Aorta/pathology , Atherosclerosis/microbiology , Body Weight/drug effects , Diet, High-Fat/adverse effects , Female , Gastrointestinal Microbiome , Insulin Resistance , Liver/pathology , Oxidative Stress/drug effects , Rats , Time Factors
7.
Mol Metab ; 8: 144-157, 2018 02.
Article in English | MEDLINE | ID: mdl-29307512

ABSTRACT

OBJECTIVE: To characterize the EndoC-ßH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. METHODS: EndoC-ßH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. RESULTS: Transplantation of EndoC-ßH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-ßH1 pseudoislets compared to monolayer cultures for both glucose and incretins. Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate. By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation. ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. CONCLUSIONS: Overall, the EndoC-ßH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-ßH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates.


Subject(s)
Cell Culture Techniques/methods , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Animals , Cell Line , Cells, Cultured , Diabetes Mellitus, Experimental/therapy , Drug Evaluation, Preclinical/methods , Humans , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Mice , Mice, SCID
8.
Proc Natl Acad Sci U S A ; 115(2): E263-E272, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279393

ABSTRACT

Cell encapsulation has been shown to hold promise for effective, long-term treatment of type 1 diabetes (T1D). However, challenges remain for its clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement. Here, we report a simple cell encapsulation design that is readily scalable and conveniently retrievable. The key to this design was to engineer a highly wettable, Ca2+-releasing nanoporous polymer thread that promoted uniform in situ cross-linking and strong adhesion of a thin layer of alginate hydrogel around the thread. The device provided immunoprotection of rat islets in immunocompetent C57BL/6 mice in a short-term (1-mo) study, similar to neat alginate fibers. However, the mechanical property of the device, critical for handling and retrieval, was much more robust than the neat alginate fibers due to the reinforcement of the central thread. It also had facile mass transfer due to the short diffusion distance. We demonstrated the therapeutic potential of the device through the correction of chemically induced diabetes in C57BL/6 mice using rat islets for 3 mo as well as in immunodeficient SCID-Beige mice using human islets for 4 mo. We further showed, as a proof of concept, the scalability and retrievability in dogs. After 1 mo of implantation in dogs, the device could be rapidly retrieved through a minimally invasive laparoscopic procedure. This encapsulation device may contribute to a cellular therapy for T1D because of its retrievability and scale-up potential.


Subject(s)
Cell- and Tissue-Based Therapy , Islets of Langerhans Transplantation/methods , Islets of Langerhans/physiology , Alginates , Animals , Diabetes Mellitus, Experimental/therapy , Dimethylformamide , Dogs , Glucuronic Acid , Hexuronic Acids , Humans , Hydrogels , Mice , Mice, SCID , Polymethyl Methacrylate , Rats
9.
Growth Horm IGF Res ; 35: 8-16, 2017 08.
Article in English | MEDLINE | ID: mdl-28595133

ABSTRACT

OBJECTIVE: Somapacitan is an albumin-binding growth hormone derivative intended for once weekly administration, currently in clinical development for treatment of adult as well as juvenile GH deficiency. Nonclinical in vivo pharmacological characterisation of somapacitan was performed to support the clinical trials. Here we present the pharmacokinetic and pharmacodynamic effects of somapacitan in rats, minipigs, and cynomolgus monkeys. METHODS: Pharmacokinetic studies investigating exposure, absorption, clearance, and bioavailability after single intravenous (i.v.) and subcutaneous (s.c.) administration were performed in all species. A dose-response study with five dose levels and a multiple dose pharmacodynamic study with four once weekly doses was performed in hypophysectomised rats to evaluate the effect of somapacitan on growth and IGF-I production. RESULTS: Pharmacokinetic profiles indicated first order absorption from the subcutaneous tissue after s.c. injections for somapacitan in all three species. Apparent terminal half-lives were 5-6h in rats, 10-12h in minipigs, and 17-20h in monkeys. Somapacitan induced a dose-dependent growth in hypophysectomised rats (p<0.001) and an increase in plasma IGF-I levels in rats (p<0.01), minipigs (p<0.01), and cynomolgus monkeys (p<0.05) after single dose administration. Multiple once weekly dosing of somapacitan in hypophysectomised rats induced a step-wise increase in body weight with an initial linear phase the first 3-4days in each dosing interval (p<0.001). CONCLUSION: The nonclinical pharmacokinetic and pharmacodynamic studies of somapacitan showed similar pharmacokinetic properties, with no absorption-limited elimination, increased clearance and increased and sustained levels of IGF-I in plasma for up to 10days after a single dose administration in all three species. Somapacitan induced a dose-dependent increase in body weight and IGF-I levels in hypophysectomised rats. Multiple dosing of somapacitan in hypophysectomised rats suggested a linear growth for the first 3-4days in each weekly dosing interval, whereas daily hGH dosing showed linear growth for approximately two weeks before reaching a plateau level.


Subject(s)
Albumins/metabolism , Human Growth Hormone/pharmacokinetics , Recombinant Proteins/pharmacokinetics , Albumins/pharmacokinetics , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Dwarfism, Pituitary/drug therapy , Human Growth Hormone/metabolism , Macaca fascicularis , Male , Protein Binding , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Swine , Swine, Miniature
10.
Eur J Pharm Sci ; 86: 29-33, 2016 Apr 30.
Article in English | MEDLINE | ID: mdl-26946443

ABSTRACT

The kidneys are thought to play an important role in the clearance of recombinant human growth hormone (rhGH), but the relative importance is not clear. Obtaining knowledge of clearance pathway is an important prerequisite for the development of new long acting growth hormone analogues targeted at treatment of patients with growth hormone disorders. The purpose of this study was to investigate the relative importance of the kidneys in the clearance of rhGH. The study employed a newly validated nephrectomy rat model and a population based pharmacokinetic approach to assess renal clearance of rhGH in non-anesthetized rats, anesthetized rats and in nephrectomized anesthetized rats. Clearance in non-anesthetized rats was 290 ml/h/kg. This was reduced to 185 ml/h/kg by anesthesia and further reduced to 18 ml/h/kg by nephrectomy. As nephrectomy was able to reduce clearance with 90%, we conclude that renal clearance plays a pivotal role in the elimination of rhGH in rats.


Subject(s)
Human Growth Hormone/pharmacokinetics , Kidney/metabolism , Animals , Human Growth Hormone/blood , Male , Nephrectomy , Rats, Sprague-Dawley
11.
PLoS One ; 11(1): e0146439, 2016.
Article in English | MEDLINE | ID: mdl-26799618

ABSTRACT

The importance of the gut microbiota (GM) in disease development has recently received increased attention, and numerous approaches have been made to better understand this important interplay. For example, metabolites derived from the GM have been shown to promote atherosclerosis, the underlying cause of cardiovascular disease (CVD), and to increase CVD risk factors. Popular interest in the role of the intestine in a variety of disease states has now resulted in a significant proportion of individuals without coeliac disease switching to gluten-free diets. The effect of gluten-free diets on atherosclerosis and cardiovascular risk factors is largely unknown. We therefore investigated the effect of a gluten-free high-fat cholesterol-rich diet, as compared to the same diet in which the gluten peptide gliadin had been added back, on atherosclerosis and several cardiovascular risk factors in apolipoprotein E-deficient (Apoe-/-) mice. The gluten-free diet transiently altered GM composition in these mice, as compared to the gliadin-supplemented diet, but did not alter body weights, glucose tolerance, insulin levels, plasma lipids, or atherosclerosis. In parallel, other Apoe-/- mice fed the same diets were treated with ampicillin, a broad-spectrum antibiotic known to affect GM composition. Ampicillin-treatment had a marked and sustained effect on GM composition, as expected. Furthermore, although ampicillin-treated mice were slightly heavier than controls, ampicillin-treatment transiently improved glucose tolerance both in the absence or presence of gliadin, reduced plasma LDL and VLDL cholesterol levels, and reduced aortic atherosclerotic lesion area. These results demonstrate that a gluten-free diet does not seem to have beneficial effects on atherosclerosis or several CVD risk factors in this mouse model, but that sustained alteration of GM composition with a broad-spectrum antibiotic has beneficial effects on CVD risk factors and atherosclerosis. These findings support the concept that altering the microbiota might provide novel treatment strategies for CVD.


Subject(s)
Atherosclerosis/epidemiology , Cardiovascular Diseases/epidemiology , Diet, Gluten-Free , Diet, High-Fat , Gastrointestinal Microbiome/drug effects , Plaque, Atherosclerotic/pathology , Ampicillin/pharmacology , Animals , Apolipoproteins E/genetics , Cholesterol/blood , Gastrointestinal Microbiome/physiology , Gliadin/metabolism , Glucose/metabolism , Lipoproteins, LDL/blood , Lipoproteins, VLDL/blood , Mice , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic/blood
12.
PLoS One ; 9(4): e93821, 2014.
Article in English | MEDLINE | ID: mdl-24740321

ABSTRACT

High fat, low carbohydrate diets have become popular, as short-term studies show that such diets are effective for reducing body weight, and lowering the risk of diabetes and cardiovascular disease. There is growing evidence from both humans and other animals that diet affects behaviour and intake of fat has been linked, positively and negatively, with traits such as exploration, social interaction, anxiety and fear. Animal models with high translational value can help provide relevant and important information in elucidating potential effects of high fat, low carbohydrate diets on human behaviour. Twenty four young, male Göttingen minipigs were fed either a high fat/cholesterol, low carbohydrate diet or a low fat, high carbohydrate/sucrose diet in contrast to a standard low fat, high carbohydrate minipig diet. Spontaneous behaviour was observed through video recordings of home pens and test-related behaviours were recorded during tests involving animal-human contact and reaction towards a novel object. We showed that the minipigs fed a high fat/cholesterol, low carbohydrate diet were less aggressive, showed more non-agonistic social contact and had fewer and less severe skin lesions and were less fearful of a novel object than minipigs fed low fat, high carbohydrate diets. These results found in a porcine model could have important implications for general health and wellbeing of humans and show the potential for using dietary manipulations to reduce aggression in human society.


Subject(s)
Aggression , Diet, Carbohydrate-Restricted , Diet, High-Fat , Fear , Swine, Miniature/physiology , Swine/physiology , Animals , Behavior, Animal , Handling, Psychological , Heart Rate , Male
13.
PLoS One ; 8(11): e79710, 2013.
Article in English | MEDLINE | ID: mdl-24260289

ABSTRACT

Obesity and type 2 diabetes are associated with an increased risk for development of certain forms of cancer, including colon cancer. The publication of highly controversial epidemiological studies in 2009 raised the possibility that use of the insulin analog glargine increases this risk further. However, it is not clear how mitogenic effects of insulin and insulin analogs measured in vitro correlate with tumor growth-promoting effects in vivo. The aim of this study was to examine possible growth-promoting effects of native human insulin, insulin X10 and IGF-1, which are considered positive controls in vitro, in a short-term animal model of an obesity- and diabetes-relevant cancer. We characterized insulin and IGF-1 receptor expression and the response to treatment with insulin, X10 and IGF-1 in the murine colon cancer cell line (MC38 cells) in vitro and in vivo. Furthermore, we examined pharmacokinetics and pharmacodynamics and monitored growth of MC38 cell allografts in mice with diet-induced obesity treated with human insulin, X10 and IGF-1. Treatment with X10 and IGF-1 significantly increased growth of MC38 cell allografts in mice with diet-induced obesity and we can therefore conclude that supra-pharmacological doses of the insulin analog X10, which is super-mitogenic in vitro and increased the incidence of mammary tumors in female rats in a 12-month toxicity study, also increase growth of tumor allografts in a short-term animal model.


Subject(s)
Colonic Neoplasms/pathology , Insulin-Like Growth Factor I/pharmacology , Insulin/pharmacology , Animals , Blood Glucose/drug effects , Blotting, Western , Cell Line , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Humans , Insulin/analogs & derivatives , Insulin/metabolism , Insulin Secretion , Insulin, Regular, Human/metabolism , Mice , Receptor, IGF Type 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...