Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6646, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863907

ABSTRACT

Geometrically frustrated kagome lattices are raising as novel platforms to engineer correlated topological electron flat bands that are prominent to electronic instabilities. Here, we demonstrate a phonon softening at the kz = π plane in ScV6Sn6. The low energy longitudinal phonon collapses at ~98 K and q = [Formula: see text] due to the electron-phonon interaction, without the emergence of long-range charge order which sets in at a different propagation vector qCDW = [Formula: see text]. Theoretical calculations corroborate the experimental finding to indicate that the leading instability is located at [Formula: see text] of a rather flat mode. We relate the phonon renormalization to the orbital-resolved susceptibility of the trigonal Sn atoms and explain the approximately flat phonon dispersion. Our data report the first example of the collapse of a kagome bosonic mode and promote the 166 compounds of kagomes as primary candidates to explore correlated flat phonon-topological flat electron physics.

2.
Nanoscale ; 15(5): 2223-2233, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36625389

ABSTRACT

Two-dimensional (2D) van der Waals (vdW) ferromagnetic metals FexGeTe2 with x = 3-5 have raised significant interest in the scientific community. Fe5GeTe2 shows prospects for spintronic applications since the Curie temperature Tc has been reported near or higher than 300 K. In the present work, epitaxial Fe5-δGeTe2 (FGT) heterostructures were grown by Molecular Beam Epitaxy (MBE) on insulating crystalline substrates. The FGT films were combined with Bi2Te3 topological insulator (TI) aiming to investigate the possible beneficial effect of the TI on the magnetic properties of FGT. FGT/Bi2Te3 films were compared to FGT capped only with AlOx to prevent oxidation. SQUID and MOKE measurements revealed that the growth of Bi2Te3 TI on FGT films significantly enhances the saturation magnetization of FGT as well as the Tc well above room temperature (RT) reaching record values of 570 K. First-principles calculations predict a shift of the Fermi level and an associated enhancement of the majority spin (primarily) as well as the total density of states at the Fermi level suggesting that effective doping of FGT from Bi2Te3 could explain the enhancement of ferromagnetism in FGT. It is also predicted that strain induced stabilization of a high magnetic moment phase in FGT/Bi2Te3 could be an alternative explanation of magnetization and Tc enhancement. Ferromagnetic resonance measurements evidence an enhanced broadening in the FGT/Bi2Te3 heterostructure when compared to FGT. We obtain a large spin mixing conductance of g↑↓eff = 4.4 × 1020 m-2, which demonstrates the great potential of FGT/Bi2Te3 systems for spin-charge conversion applications at room temperature.

3.
Nat Commun ; 13(1): 7418, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36456570

ABSTRACT

The quantum limit (QL) of an electron liquid, realised at strong magnetic fields, has long been proposed to host a wealth of strongly correlated states of matter. Electronic states in the QL are, for example, quasi-one dimensional (1D), which implies perfectly nested Fermi surfaces prone to instabilities. Whereas the QL typically requires unreachably strong magnetic fields, the topological semimetal ZrTe5 has been shown to reach the QL at fields of only a few Tesla. Here, we characterize the QL of ZrTe5 at fields up to 64 T by a combination of electrical-transport and ultrasound measurements. We find that the Zeeman effect in ZrTe5 enables an efficient tuning of the 1D Landau band structure with magnetic field. This results in a Lifshitz transition to a 1D Weyl regime in which perfect charge neutrality can be achieved. Since no instability-driven phase transitions destabilise the 1D electron liquid for the investigated field strengths and temperatures, our analysis establishes ZrTe5 as a thoroughly understood platform for potentially inducing more exotic interaction-driven phases at lower temperatures.

4.
Phys Rev Lett ; 129(5): 056401, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35960582

ABSTRACT

The phase diagram of the kagome metal family AV_{3}Sb_{5} (A=K, Rb, Cs) features both superconductivity and charge density wave (CDW) instabilities, which have generated tremendous recent attention. Nonetheless, significant questions remain. In particular, the temperature evolution and demise of the CDW state has not been extensively studied, and little is known about the coexistence of the CDW with superconductivity at low temperatures. We report an x-ray scattering study of CsV_{3}Sb_{5} over a broad range of temperatures from 300 to ∼2 K, below the onset of its superconductivity at T_{c}∼2.9 K. Order parameter measurements of the 2×2×2 CDW structure show an unusual and extended linear temperature dependence onsetting at T^{*}∼160 K, much higher than the susceptibility anomaly associated with CDW order at T_{CDW}=94 K. This implies strong CDW fluctuations exist to ∼1.7×T_{CDW}. The CDW order parameter is observed to be constant from T=16 to 2 K, implying that the CDW and superconducting order coexist below T_{c}, and, at ambient pressure, any possible competition between the two order parameters is manifested at temperatures well below T_{c}, if at all. Anomalies in the temperature dependence in the lattice parameters coincide with T_{CDW} for c(T) and with T^{*} for a(T).

5.
J Phys Condens Matter ; 34(42)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35940168

ABSTRACT

PtGa is a topological semimetal with giant spin-split Fermi arcs. Here, we report on angular-dependent de Haas-van Alphen (dHvA) measurements combined with band-structure calculations to elucidate the details of the bulk Fermi surface of PtGa. The strong spin-orbit coupling leads to eight bands crossing the Fermi energy that form a multitude of Fermi surfaces with closed extremal orbits and results in very rich dHvA spectra. The large number of experimentally observed dHvA frequencies make the assignment to the equally large number of calculated dHvA orbits challenging. Nevertheless, we find consistency between experiment and calculations verifying the topological character with maximal Chern number of the spin-split Fermi surface.

6.
Sci Rep ; 12(1): 2153, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35140258

ABSTRACT

The quasi-quantized Hall effect (QQHE) is the three-dimensional (3D) counterpart of the integer quantum Hall effect (QHE), exhibited only by two-dimensional (2D) electron systems. It has recently been observed in layered materials, consisting of stacks of weakly coupled 2D platelets that are yet characterized by a 3D anisotropic Fermi surface. However, it is predicted that the quasi-quantized 3D version of the 2D QHE should occur in a much broader class of bulk materials, regardless of the underlying crystal structure. Here, we compare the observation of quasi-quantized plateau-like features in the Hall conductivity of the n-type bulk semiconductor InAs with the predictions for the 3D QQHE in presence of parabolic electron bands. InAs takes form of a cubic crystal without any low-dimensional substructure. The onset of the plateau-like feature in the Hall conductivity scales with [Formula: see text] in units of the conductance quantum and is accompanied by a Shubnikov-de Haas minimum in the longitudinal resistivity, consistent wit the results of calculations. This confirms the suggestion that the 3D QQHE may be a generic effect directly observable in materials with small Fermi surfaces, placed in sufficiently strong magnetic fields.

7.
Nat Commun ; 12(1): 3994, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34183664

ABSTRACT

Constrained by the Nielsen-Ninomiya no-go theorem, in all so-far experimentally determined Weyl semimetals (WSMs) the Weyl points (WPs) always appear in pairs in the momentum space with no exception. As a consequence, Fermi arcs occur on surfaces which connect the projections of the WPs with opposite chiral charges. However, this situation can be circumvented in the case of unpaired WP, without relevant surface Fermi arc connecting its surface projection, appearing singularly, while its Berry curvature field is absorbed by nontrivial charged nodal walls. Here, combining angle-resolved photoemission spectroscopy with density functional theory calculations, we show experimentally that a singular Weyl point emerges in PtGa at the center of the Brillouin zone (BZ), which is surrounded by closed Weyl nodal walls located at the BZ boundaries and there is no Fermi arc connecting its surface projection. Our results reveal that nontrivial band crossings of different dimensionalities can emerge concomitantly in condensed matter, while their coexistence ensures the net topological charge of different dimensional topological objects to be zero. Our observation extends the applicable range of the original Nielsen-Ninomiya no-go theorem which was derived from zero dimensional paired WPs with opposite chirality.

8.
Nat Commun ; 12(1): 3197, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34045452

ABSTRACT

The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe5 samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe5 electronic structure and its Dirac-type semi-metallic character.

9.
Nat Commun ; 12(1): 154, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33420054

ABSTRACT

The absence of mirror symmetry, or chirality, is behind striking natural phenomena found in systems as diverse as DNA and crystalline solids. A remarkable example occurs when chiral semimetals with topologically protected band degeneracies are illuminated with circularly polarized light. Under the right conditions, the part of the generated photocurrent that switches sign upon reversal of the light's polarization, known as the circular photo-galvanic effect, is predicted to depend only on fundamental constants. The conditions to observe quantization are non-universal, and depend on material parameters and the incident frequency. In this work, we perform terahertz emission spectroscopy with tunable photon energy from 0.2 -1.1 eV in the chiral topological semimetal CoSi. We identify a large longitudinal photocurrent peaked at 0.4 eV reaching  ~550 µ A/V2, which is much larger than the photocurrent in any chiral crystal reported in the literature. Using first-principles calculations we establish that the peak originates only from topological band crossings, reaching 3.3 ± 0.3 in units of the quantization constant. Our calculations indicate that the quantized circular photo-galvanic effect is within reach in CoSi upon doping and increase of the hot-carrier lifetime. The large photo-conductivity suggests that topological semimetals could potentially be used as novel mid-infrared detectors.

10.
Nat Commun ; 11(1): 5926, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33230118

ABSTRACT

Interacting electrons confined to their lowest Landau level in a high magnetic field can form a variety of correlated states, some of which manifest themselves in a Hall effect. Although such states have been predicted to occur in three-dimensional semimetals, a corresponding Hall response has not yet been experimentally observed. Here, we report the observation of an unconventional Hall response in the quantum limit of the bulk semimetal HfTe5, adjacent to the three-dimensional quantum Hall effect of a single electron band at low magnetic fields. The additional plateau-like feature in the Hall conductivity of the lowest Landau level is accompanied by a Shubnikov-de Haas minimum in the longitudinal electrical resistivity and its magnitude relates as 3/5 to the height of the last plateau of the three-dimensional quantum Hall effect. Our findings are consistent with strong electron-electron interactions, stabilizing an unconventional variant of the Hall effect in a three-dimensional material in the quantum limit.

11.
Phys Rev E ; 101(6-2): 069902, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688549

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevE.96.023310.

12.
Nature ; 582(7810): E1, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32494072

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Phys Rev Lett ; 124(17): 176402, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412257

ABSTRACT

Landau-level spectroscopy, the optical analysis of electrons in materials subject to a strong magnetic field, is a versatile probe of the electronic band structure and has been successfully used in the identification of novel states of matter such as Dirac electrons, topological materials or Weyl semimetals. The latter arise from a complex interplay between crystal symmetry, spin-orbit interaction, and inverse ordering of electronic bands. Here, we report on unusual Landau-level transitions in the monopnictide TaP that decrease in energy with increasing magnetic field. We show that these transitions arise naturally at intermediate energies in time-reversal-invariant Weyl semimetals where the Weyl nodes are formed by a partially gapped nodal-loop in the band structure. We propose a simple theoretical model for electronic bands in these Weyl materials that captures the collected magneto-optical data to great extent.

14.
Nature ; 582(7812): E14, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32472016

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Nature ; 575(7782): 315-319, 2019 11.
Article in English | MEDLINE | ID: mdl-31590178

ABSTRACT

An axion insulator is a correlated topological phase, which is predicted to arise from the formation of a charge-density wave in a Weyl semimetal1,2-that is, a material in which electrons behave as massless chiral fermions. The accompanying sliding mode in the charge-density-wave phase-the phason-is an axion3,4 and is expected to cause anomalous magnetoelectric transport effects. However, this axionic charge-density wave has not yet been experimentally detected. Here we report the observation of a large positive contribution to the magnetoconductance in the sliding mode of the charge-density-wave Weyl semimetal (TaSe4)2I for collinear electric and magnetic fields. The positive contribution to the magnetoconductance originates from the anomalous axionic contribution of the chiral anomaly to the phason current, and is locked to the parallel alignment of the electric and magnetic fields. By rotating the magnetic field, we show that the angular dependence of the magnetoconductance is consistent with the anomalous transport of an axionic charge-density wave. Our results show that it is possible to find experimental evidence for axions in strongly correlated topological condensed matter systems, which have so far been elusive in any other context.

16.
Science ; 365(6459): 1282-1285, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31604236

ABSTRACT

Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. These results establish Co3Sn2S2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.

17.
Rev Sci Instrum ; 90(8): 083001, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472611

ABSTRACT

With its direct correspondence to electronic structure, angle-resolved photoemission spectroscopy (ARPES) is a ubiquitous tool for the study of solids. When extended to the temporal domain, time-resolved (TR)-ARPES offers the potential to move beyond equilibrium properties, exploring both the unoccupied electronic structure as well as its dynamical response under ultrafast perturbation. Historically, ultrafast extreme ultraviolet sources employing high-order harmonic generation (HHG) have required compromises that make it challenging to achieve a high energy resolution-which is highly desirable for many TR-ARPES studies-while producing high photon energies and a high photon flux. We address this challenge by performing HHG inside a femtosecond enhancement cavity, realizing a practical source for TR-ARPES that achieves a flux of over 1011 photons/s delivered to the sample, operates over a range of 8-40 eV with a repetition rate of 60 MHz. This source enables TR-ARPES studies with a temporal and energy resolution of 190 fs and 22 meV, respectively. To characterize the system, we perform ARPES measurements of polycrystalline Au and MoTe2, as well as TR-ARPES studies on graphite.

18.
Nat Commun ; 10(1): 3478, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375677

ABSTRACT

Surface Fermi arcs (SFAs), the unique open Fermi-surfaces (FSs) discovered recently in topological Weyl semimetals (TWSs), are unlike closed FSs in conventional materials and can give rise to many exotic phenomena, such as anomalous SFA-mediated quantum oscillations, chiral magnetic effects, three-dimensional quantum Hall effect, non-local voltage generation and anomalous electromagnetic wave transmission. Here, by using in-situ surface decoration, we demonstrate successful manipulation of the shape, size and even the connections of SFAs in a model TWS, NbAs, and observe their evolution that leads to an unusual topological Lifshitz transition not caused by the change of the carrier concentration. The phase transition teleports the SFAs between different parts of the surface Brillouin zone. Despite the dramatic surface evolution, the existence of SFAs is robust and each SFA remains tied to a pair of Weyl points of opposite chirality, as dictated by the bulk topology.

19.
Phys Rev Lett ; 122(17): 176402, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31107063

ABSTRACT

Distinct to type-I Weyl semimetals (WSMs) that host quasiparticles described by the Weyl equation, the energy dispersion of quasiparticles in type-II WSMs violates Lorentz invariance and the Weyl cones in the momentum space are tilted. Since it was proposed that type-II Weyl fermions could emerge from (W,Mo)Te_{2} and (W,Mo)P_{2} families of materials, a large number of experiments have been dedicated to unveiling the possible manifestation of type-II WSMs, e.g., surface-state Fermi arcs. However, the interpretations of the experimental results are very controversial. Here, using angle-resolved photoemission spectroscopy supported by the first-principles calculations, we probe the tilted Weyl cone bands in the bulk electronic structure of WP_{2} directly, which are at the origin of Fermi arcs at the surfaces and transport properties related to the chiral anomaly in type-II WSMs. Our results ascertain that, due to the spin-orbit coupling, the Weyl nodes originate from the splitting of fourfold degenerate band-crossing points with Chern numbers C=±2 induced by the crystal symmetries of WP_{2}, which is unique among all the discovered WSMs. Our finding also provides a guiding line to observe the chiral anomaly that could manifest in novel transport properties.

20.
Sci Adv ; 5(4): eaav8575, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30972368

ABSTRACT

The spin Hall effect (SHE) is the conversion of charge current to spin current, and nonmagnetic metals with large SHEs are extremely sought after for spintronic applications, but their rarity has stifled widespread use. Here, we predict and explain the large intrinsic SHE in ß-W and the A15 family of superconductors: W3Ta, Ta3Sb, and Cr3Ir having spin Hall conductivities (SHCs) of -2250, -1400, and 1210 ℏ e ( S / cm ) , respectively. Combining concepts from topological physics with the dependence of the SHE on the spin Berry curvature (SBC) of the electronic bands, we propose a simple strategy to rapidly search for materials with large intrinsic SHEs based on the following ideas: High symmetry combined with heavy atoms gives rise to multiple Dirac-like crossings in the electronic structure; without sufficient symmetry protection, these crossings gap due to spin-orbit coupling; and gapped crossings create large SBC.

SELECTION OF CITATIONS
SEARCH DETAIL
...