Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 147(5): 1871-1886, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38128553

ABSTRACT

Multiple sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressive stages of the disease and with ageing, as the environment becomes progressively more hostile. This may be attributable to inhibitory molecules in the multiple sclerosis environment including activation of the p38MAPK family of kinases. We explored oligodendrocyte precursor cell differentiation and myelin repair using animals with conditional ablation of p38MAPKγ from oligodendrocyte precursors. We found that p38γMAPK ablation accelerated oligodendrocyte precursor cell differentiation and myelination. This resulted in an increase in both the total number of oligodendrocytes and the migration of progenitors ex vivo and faster remyelination in the cuprizone model of demyelination/remyelination. Consistent with its role as an inhibitor of myelination, p38γMAPK was significantly downregulated as oligodendrocyte precursor cells matured into oligodendrocytes. Notably, p38γMAPK was enriched in multiple sclerosis lesions from patients. Oligodendrocyte progenitors expressed high levels of p38γMAPK in areas of failed remyelination but did not express detectable levels of p38γMAPK in areas where remyelination was apparent. Our data suggest that p38γ could be targeted to improve myelin repair in multiple sclerosis.


Subject(s)
Multiple Sclerosis , Myelin Sheath , Oligodendroglia , Remyelination , Animals , Remyelination/physiology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Myelin Sheath/metabolism , Myelin Sheath/pathology , Mice , Oligodendroglia/metabolism , Oligodendroglia/pathology , Humans , Mitogen-Activated Protein Kinase 12/metabolism , Mitogen-Activated Protein Kinase 12/genetics , Cell Differentiation/physiology , Cuprizone/toxicity , Mice, Inbred C57BL , Male , Female , Demyelinating Diseases/pathology , Demyelinating Diseases/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/pathology , Mice, Transgenic
2.
ASN Neuro ; 8(2)2016.
Article in English | MEDLINE | ID: mdl-27095827

ABSTRACT

In peripheral nerves, P0 glycoprotein accounts for more than 20% of myelin protein content. P0 is synthesized by Schwann cells, processed in the endoplasmic reticulum (ER) and enters the secretory pathway. However, the mutant P0 with S63 deleted (P0S63del) accumulates in the ER lumen and induces a demyelinating neuropathy in Charcot-Marie-Tooth disease type 1B (CMT1B)-S63del mice. Accumulation of P0S63del in the ER triggers a persistent unfolded protein response. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER stress sensor that phosphorylates eukaryotic initiation factor 2 alpha (eIF2alpha) in order to attenuate protein synthesis. We have shown that increasing phosphophorylated-eIF2alpha (P-eIF2alpha) is a potent therapeutic strategy, improving myelination and motor function in S63del mice. Here, we explore the converse experiment:Perkhaploinsufficiency reduces P-eIF2alpha in S63del nerves as expected, but surprisingly, ameliorates, rather than worsens S63del neuropathy. Motor performance and myelin abnormalities improved in S63del//Perk+/- compared with S63del mice. These data suggest that mechanisms other than protein translation might be involved in CMT1B/S63del neuropathy. In addition,Perkdeficiency in other cells may contribute to demyelination in a non-Schwann-cell autonomous manner.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Mutation/genetics , eIF-2 Kinase/deficiency , Age Factors , Animals , Animals, Newborn , Cells, Cultured , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Coculture Techniques , Disease Models, Animal , Embryo, Mammalian , Ganglia, Spinal/cytology , Gene Expression Regulation/genetics , Immunoprecipitation , Mice , Mice, Transgenic , Myelin Basic Protein/metabolism , Myelin P0 Protein/genetics , Myelin P0 Protein/metabolism , Neural Conduction/drug effects , Neural Conduction/genetics , Neurons/drug effects , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , eIF-2 Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL