Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3980, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730231

ABSTRACT

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways. We observed X-chromosome dosage reduction in the hippocampus of male individuals with schizophrenia. Our sex interaction model revealed 148 junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific schizophrenia analysis identified dozens of differentially expressed genes, notably enriched in immune-related pathways. Finally, our sex-interacting expression quantitative trait loci analysis revealed 704 unique genes, nine associated with schizophrenia risk. These findings emphasize the importance of sex-informed analysis of sexually dimorphic traits, inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased female samples for schizophrenia analyses.


Subject(s)
Caudate Nucleus , Dorsolateral Prefrontal Cortex , Hippocampus , Quantitative Trait Loci , Schizophrenia , Sex Characteristics , Humans , Schizophrenia/genetics , Schizophrenia/metabolism , Female , Male , Hippocampus/metabolism , Caudate Nucleus/metabolism , Dorsolateral Prefrontal Cortex/metabolism , Adult , Transcriptome , Gene Expression Profiling , Sex Factors , Chromosomes, Human, X/genetics , Prefrontal Cortex/metabolism
2.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798538

ABSTRACT

DNA repetitive sequences (or repeats) comprise over 50% of the human genome and have a crucial regulatory role, specifically regulating transcription machinery. The human brain is the tissue with the highest detectable repeat expression and dysregulations on the repeat activity are related to several neurological and neurodegenerative disorders, as repeat-derived products can stimulate a pro-inflammatory response. Even so, it is unclear how repeat expression acts on the aging neurotypical brain. Here, we leverage a large postmortem transcriptome cohort spanning the human lifespan to assess global repeat expression in the neurotypical brain. We identified 21,696 differentially expressed repeats (DERs) that varied across seven age bins (Prenatal; 0-15; 16-29; 30-39; 40-49; 50-59; 60+) across the caudate nucleus (n=271), dorsolateral prefrontal cortex (n=304), and hippocampus (n=310). Interestingly, we found that long interspersed nuclear elements and long terminal repeats (LTRs) DERs were the most abundant repeat families when comparing infants to early adolescence (0-15) with older adults (60+). Of these differentially regulated LTRs, we identified 17 shared across all brain regions, including increased expression of HERV-K-int in older adult brains (60+). Co-expression analysis from each of the three brain regions also showed repeats from the HERV subfamily were intramodular hubs in its subnetworks. While we do not observe a strong global relationship between repeat expression and age, we identified HERV-K as a repeat signature associated with the aging neurotypical brain. Our study is the first global assessment of repeat expression in the neurotypical brain.

3.
Int J Mol Sci ; 24(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37298367

ABSTRACT

Complex diseases are associated with the effects of multiple genes, proteins, and biological pathways. In this context, the tools of Network Medicine are compatible as a platform to systematically explore not only the molecular complexity of a specific disease but may also lead to the identification of disease modules and pathways. Such an approach enables us to gain a better understanding of how environmental chemical exposures affect the function of human cells, providing better perceptions about the mechanisms involved and helping to monitor/prevent exposure and disease to chemicals such as benzene and malathion. We selected differentially expressed genes for exposure to benzene and malathion. The construction of interaction networks was carried out using GeneMANIA and STRING. Topological properties were calculated using MCODE, BiNGO, and CentiScaPe, and a Benzene network composed of 114 genes and 2415 interactions was obtained. After topological analysis, five networks were identified. In these subnets, the most interconnected nodes were identified as: IL-8, KLF6, KLF4, JUN, SERTAD1, and MT1H. In the Malathion network, composed of 67 proteins and 134 interactions, HRAS and STAT3 were the most interconnected nodes. Path analysis, combined with various types of high-throughput data, reflects biological processes more clearly and comprehensively than analyses involving the evaluation of individual genes. We emphasize the central roles played by several important hub genes obtained by exposure to benzene and malathion.


Subject(s)
Benzene , Occupational Exposure , Humans , Benzene/toxicity , Malathion/toxicity , Biomarkers/metabolism , Occupational Exposure/adverse effects , Environmental Exposure , Gene Regulatory Networks , Gene Expression Profiling
4.
Nat Neurosci ; 25(11): 1559-1568, 2022 11.
Article in English | MEDLINE | ID: mdl-36319771

ABSTRACT

Most studies of gene expression in the brains of individuals with schizophrenia have focused on cortical regions, but subcortical nuclei such as the striatum are prominently implicated in the disease, and current antipsychotic drugs target the striatum's dense dopaminergic innervation. Here, we performed a comprehensive analysis of the genetic and transcriptional landscape of schizophrenia in the postmortem caudate nucleus of the striatum of 443 individuals (245 neurotypical individuals, 154 individuals with schizophrenia and 44 individuals with bipolar disorder), 210 from African and 233 from European ancestries. Integrating expression quantitative trait loci analysis, Mendelian randomization with the latest schizophrenia genome-wide association study, transcriptome-wide association study and differential expression analysis, we identified many genes associated with schizophrenia risk, including potentially the dopamine D2 receptor short isoform. We found that antipsychotic medication has an extensive influence on caudate gene expression. We constructed caudate nucleus gene expression networks that highlight interactions involving schizophrenia risk. These analyses provide a resource for the study of schizophrenia and insights into risk mechanisms and potential therapeutic targets.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/metabolism , Caudate Nucleus , Genome-Wide Association Study , Transcriptome
5.
J Dev Orig Health Dis ; 13(5): 556-565, 2022 10.
Article in English | MEDLINE | ID: mdl-35256034

ABSTRACT

The crosstalk between maternal stress exposure and fetal development may be mediated by epigenetic mechanisms, including DNA methylation (DNAm). To address this matter, we collect 32 cord blood samples from low-income Brazilian pregnant adolescents participants of a pilot randomized clinical intervention study (ClinicalTrials.gov, Identifier: NCT02807818). We hypothesized that the association between the intervention and infant neurodevelopmental outcomes at 12 months of age would be mediated by DNAm. First, we searched genome methylation differences between cases and controls using different approaches, as well as differences in age acceleration (AA), represented by the difference of methylation age and birth age. According to an adjusted p-value ≤ 0.05 we identified 3090 differentially methylated positions- CpG sites (DMPs), 21 differentially methylated regions (DMRs) and one comethylated module weakly preserved between groups. The intervention group presented a smaller AA compared to the control group (p = 0.025). A logistic regression controlled by sex and with gestational age indicated a coefficient of -0.35 towards intervention group (p = 0.016) considering AA. A higher cognitive domain score from Bayley III scale was observed in the intervention group at 12 months of age. Then, we performed a potential causal mediation analysis selecting only DMPs highly associated with the cognitive domain (adj. R2 > 0.4), DMRs and CpGs of hub genes from the weakly preserved comethylated module and epigenetic clock as raw values. DMPs in STXBP6, and PF4 DMR, mediated the association between the maternal intervention and the cognitive domain at 12 months of age. In conclusion, DNAm in different sites and regions mediated the association between intervention and cognitive outcome.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Adolescent , Cognition , Epigenomics , Female , Fetal Blood/metabolism , Humans , Maternal Exposure , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...