Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11584, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773245

ABSTRACT

Climate change and disease threaten shrimp farming. Here, we studied the beneficial properties of a phytogenic formulation, Shrimp Best (SB), in whiteleg shrimp. Functional studies showed that SB dose-dependently increased shrimp body weight and decreased feed conversion ratio. We found that SB protected against Vibrio parahaemolyticus as evidenced by survival rate, bacterial load, and hepatopancreatic pathology in shrimp. Finally, we explored the likely mechanism by which SB affects growth performance and vibriosis in shrimp. The 16S rRNA sequencing data showed that SB increased 6 probiotic genera and decreased 6 genera of pathogenic bacteria in shrimp. Among these, SB increased the proportion of Lactobacillus johnsonii and decreased that of V. parahaemolyticus in shrimp guts. To dissect the relationship among SB, Lactobacillus and Vibrio, we investigated the in vitro regulation of Lactobacillus and Vibrio by SB. SB at ≥ 0.25 µg/mL promoted L. johnsonii growth. Additionally, L. johnsonii and its supernatant could inhibit V. parahaemolyticus. Furthermore, SB could up-regulate five anti-Vibrio metabolites of L. johnsonii, which caused bacterial membrane destruction. In parallel, we identified 3 fatty acids as active compounds from SB. Overall, this work demonstrated that SB improved growth performance and vibriosis protection in shrimp via the regulation of gut microbiota.


Subject(s)
Penaeidae , Vibrio parahaemolyticus , Animals , Penaeidae/microbiology , Penaeidae/growth & development , Vibrio parahaemolyticus/drug effects , Vibrio parahaemolyticus/growth & development , Vibrio parahaemolyticus/pathogenicity , Vibrio Infections/prevention & control , Vibrio Infections/veterinary , Vibrio Infections/microbiology , Lactobacillus/growth & development , RNA, Ribosomal, 16S/genetics , Vibrio/drug effects , Vibrio/pathogenicity , Probiotics
2.
Bioengineering (Basel) ; 10(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37370564

ABSTRACT

Over 70,000 people die of bacterial infections worldwide annually. Antibiotics have been liberally used to treat these diseases and, consequently, antibiotic resistance and drug ineffectiveness has been generated. In this environment, new anti-bacterial compounds are being urgently sought. Around 500 Artemisia species have been identified worldwide. Most species of this genus are aromatic and have multiple functions. Research into the Artemisia plants has expanded rapidly in recent years. Herein, we aim to update and summarize recent information about the phytochemistry, pharmacology and toxicology of the Artemisia plants. A literature search of articles published between 2003 to 2022 in PubMed, Google Scholar, Web of Science databases, and KNApSAcK metabolomics databases revealed that 20 Artemisia species and 75 compounds have been documented to possess anti-bacterial functions and multiple modes of action. We focus and discuss the progress in understanding the chemistry (structure and plant species source), anti-bacterial activities, and possible mechanisms of these phytochemicals. Mechanistic studies show that terpenoids, flavonoids, coumarins and others (miscellaneous group) were able to destroy cell walls and membranes in bacteria and interfere with DNA, proteins, enzymes and so on in bacteria. An overview of new anti-bacterial strategies using plant compounds and extracts is also provided.

3.
Cell Mol Life Sci ; 80(4): 101, 2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36935456

ABSTRACT

Pdia4 has been characterized as a key protein that positively regulates ß-cell failure and diabetes via ROS regulation. Here, we investigated the function and mechanism of PS1, a Pdia4 inhibitor, in ß-cells and diabetes. We found that PS1 had an IC50 of 4 µM for Pdia4. Furthermore, PS1 alone and in combination with metformin significantly reversed diabetes in db/db mice, 6 to 7 mice per group, as evidenced by blood glucose, glycosylated hemoglobin A1c (HbA1c), glucose tolerance test, diabetic incidence, survival and longevity (P < 0.05 or less). Accordingly, PS1 reduced cell death and dysfunction in the pancreatic ß-islets of db/db mice as exemplified by serum insulin, serum c-peptide, reactive oxygen species (ROS), islet atrophy, and homeostatic model assessment (HOMA) indices (P < 0.05 or less). Moreover, PS1 decreased cell death in the ß-islets of db/db mice. Mechanistic studies showed that PS1 significantly increased cell survival and insulin secretion in Min6 cells in response to high glucose (P < 0.05 or less). This increase could be attributed to a reduction in ROS production and the activity of electron transport chain complex 1 (ETC C1) and Nox in Min6 cells by PS1. Further, we found that PS1 inhibited the enzymatic activity of Pdia4 and mitigated the interaction between Pdia4 and Ndufs3 or p22 in Min6 cells (P < 0.01 or less). Taken together, this work demonstrates that PS1 negatively regulated ß-cell pathogenesis and diabetes via reduction of ROS production involving the Pdia4/Ndufs3 and Pdia4/p22 cascades.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Reactive Oxygen Species/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Blood Glucose/metabolism , Mice, Inbred Strains , Mice, Inbred C57BL , Protein Disulfide-Isomerases/metabolism
4.
EMBO Mol Med ; 13(10): e11668, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34542937

ABSTRACT

Loss of ß-cell number and function is a hallmark of diabetes. ß-cell preservation is emerging as a promising strategy to treat and reverse diabetes. Here, we first found that Pdia4 was primarily expressed in ß-cells. This expression was up-regulated in ß-cells and blood of mice in response to excess nutrients. Ablation of Pdia4 alleviated diabetes as shown by reduced islet destruction, blood glucose and HbA1c, reactive oxygen species (ROS), and increased insulin secretion in diabetic mice. Strikingly, this ablation alone or in combination with food reduction could fully reverse diabetes. Conversely, overexpression of Pdia4 had the opposite pathophysiological outcomes in the mice. In addition, Pdia4 positively regulated ß-cell death, dysfunction, and ROS production. Mechanistic studies demonstrated that Pdia4 increased ROS content in ß-cells via its action on the pathway of Ndufs3 and p22phox . Finally, we found that 2-ß-D-glucopyranosyloxy1-hydroxytrideca 5,7,9,11-tetrayne (GHTT), a Pdia4 inhibitor, suppressed diabetic development in diabetic mice. These findings characterize Pdia4 as a crucial regulator of ß-cell pathogenesis and diabetes, suggesting Pdia4 is a novel therapeutic and diagnostic target of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Blood Glucose , Diabetes Mellitus, Experimental/therapy , Mice , Protein Disulfide-Isomerases , Reactive Oxygen Species
5.
Food Chem ; 333: 127458, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32673952

ABSTRACT

Artemisia species are aromatic herbs used as food and/or ethnomedicine worldwide; however, the use of these plants is often impeded by misidentification. Here, molecular and chemotaxonomic approaches were combined to assist in the morphology-based authentication of Artemisia species, and Artemisia indica and Artemisia argyi were identified. The plant extracts and compounds obtained from these species, 1,8-cineole, carveol, α-elemene, α-farnesene, methyl linolenate, diisooctyl phthalate inhibited the growth of food-borne harmful bacteria. Mechanistic studies showed that the extract and active compounds of A. indica killed Gram-negative and -positive bacteria via destruction of the bacterial membrane. Finally, in vivo data demonstrated that A. indica protected against bacterial infection in mice as evidenced by survival rate, bacterial load in organs, gut pathology, diarrhea, body weight, food consumption, stool weight, and pathology score. A. indica and its active compounds have potential for use as food supplements for food-borne bacterial diseases and thus improve human health.


Subject(s)
Anti-Bacterial Agents/pharmacology , Artemisia/chemistry , Phytochemicals/analysis , Plant Extracts/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Bacterial Load , Diarrhea/drug therapy , Diarrhea/microbiology , Female , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Mice, Inbred BALB C , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Salmonella Food Poisoning/drug therapy , Salmonella Food Poisoning/mortality , Taiwan
6.
Article in English | MEDLINE | ID: mdl-26557148

ABSTRACT

Bidens pilosa, a medicinal herb worldwide, is rich in bioactive polyynes. In this study, by using high resolution 2-dimensional gel electrophoresis coupled with mass spectrometry analysis, as many as 2000 protein spots could be detected and those whose expression was specifically up- or downregulated in Jurkat T cells responsive to the treatment with 2-ß-D-glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne (GHTT) can be identified. GHTT treatment can upregulate thirteen proteins involved in signal transduction, detoxification, metabolism, energy pathways, and channel transport in Jurkat cells. Nine proteins, that is, thioredoxin-like proteins, BH3 interacting domain death agonist (BID protein involving apoptosis), methylcrotonoyl-CoA carboxylase beta chain, and NADH-ubiquinone oxidoreductase, were downregulated in GHTT-treated Jurkat cells. Further, bioinformatics tool, Ingenuity software, was used to predict signaling pathways based on the data obtained from the differential proteomics approach. Two matched pathways, relevant to mitochondrial dysfunction and apoptosis, in Jurkat cells were inferred from the proteomics data. Biochemical analysis further verified both pathways involving GHTT in Jurkat cells. These findings do not merely prove the feasibility of combining proteomics and bioinformatics methods to identify cellular proteins as key players in response to the phytocompound in Jurkat cells but also establish the pathways of the proteins as the potential therapeutic targets of leukemia.

SELECTION OF CITATIONS
SEARCH DETAIL
...