Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 72, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38267871

ABSTRACT

Melatonin plays important roles in multiple stress responses; however, the downstream signaling pathway and molecular mechanism remain unclear. This study aimed to elucidate the transcriptional regulation of melatonin-induced salt stress tolerance in Phaseolus vulgaris L. and identify the key downstream transcription factors of melatonin through transcriptomic and metabolomic analyses. The melatonin-induced transcriptional network of hormones, transcription factors, and functional genes was established under both control and stress conditions. Among these, eight candidate transcription factors were identified via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, one gene related to transmembrane transport of salts (Phvul.004G177300). These genes may play a role in maintaining the cell structure and excreting sodium ions outside the cell or transporting them to the vacuoles for storage. Melatonin regulates the Phvul.009G210332 gene and metabolites C05642 (N-acetyl-N-2-formyl-5-methoxycanurine), C05643 (6-hydroxymelatonin), C05660 (5-methoxyindoleacetic acid) involved in tryptophan metabolism. The metabolites C05642 and C05643 were identified as decomposition products of tryptophan, indicating that exogenous melatonin entered the P. vulgaris tissue and was metabolized. Melatonin promotes the synthesis and metabolism of tryptophan, which is crucial to plant metabolism, growth, maintenance, and repair.


Subject(s)
Melatonin , Phaseolus , Phaseolus/genetics , Tryptophan , Gene Expression Profiling , Salt Stress , Transcription Factors
2.
Sci Rep ; 13(1): 20150, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978211

ABSTRACT

With the rapid development of social economy, the ecological environment problems caused by the change of wetland land use have been widely concerned. This paper takes the Caohai National Nature Reserve (CNNR) of China as the research object on the basis of referring to previous research results. Firstly, the remote sensing data was employed to examine the spatio-temporal evolution process of the CNNR from three aspects: land use structure change, land use dynamic degree and land use space change. Then the change of ecological environment quality was studied from the greenness, the wetness, the dryness and the heat. Based on the spatiotemporal changes of land use types and ecological environment quality in the CNNR from 2000 to 2020, a comprehensive index, the remote sensing ecological index (RSEI), was constructed to analyze the ecological environmental effects of land use changes. The results indicate that the land use changes in the CNNR went through two major periods: first, a period of rapid decline in cultivated land, and second, a period of sharp increase in constructed land. During the period of rapid decline in cultivated land, the ecological environment quality in the study area showed an upward trend. However, during the period of increased constructed land, the ecological environment quality gradually stabilized. This study provides a basis for the coordinated development of the ecological environment and social economy in the CNNR area.

3.
Front Genet ; 14: 1219898, 2023.
Article in English | MEDLINE | ID: mdl-37576557

ABSTRACT

Tomato (Solanum lycopersicum) is widely cultivated and consumed worldwide. Tomato leaf mold, caused by Cladosporium fulvum, is one of the most devastating diseases in tomato production. At present, some tomato leaf mold resistance (Cf series) genes used in production gradually lose resistance due to the continuous and rapid differentiation of C. fulvum physiological races. The Cf-16 gene derived from the "Ontario7816" tomato cultivar has shown effective resistance in field trials for many years, but few studies have reported on the mapping of the Cf-16 gene, which has not been cloned, limiting its utilization in tomato breeding. Here, we mapped Cf-16 using a novel comprehensive strategy including bulk segregation analysis (BSA), genome resequencing and SSR molecular markers. A genetic analysis revealed that Cf-16 resistance in "Ontario7816" is controlled by one major dominant locus. The Cf-16 gene was mapped in a region of 2.6 cM at chromosome 6 between two markers, namely, TGS447 and TES312, by using an F2 population from a cross between the resistant cultivar "Ontario7816" and susceptible line "Moneymaker." Two nucleotide-binding-site-leucine-rich repeat (NBS-LRR) resistance genes, namely, XM_004240667.3 and XM_010323727.1, were identified in this interval. They are strong candidates for the Cf-16 gene. The mapping of Cf-16 may speed up its utilization for breeding resistant tomato varieties and represents an important step forward in our understanding of the mechanism underlying resistance to tomato leaf mold.

4.
Nat Genet ; 55(7): 1232-1242, 2023 07.
Article in English | MEDLINE | ID: mdl-37291196

ABSTRACT

Setaria italica (foxtail millet), a founder crop of East Asian agriculture, is a model plant for C4 photosynthesis and developing approaches to adaptive breeding across multiple climates. Here we established the Setaria pan-genome by assembling 110 representative genomes from a worldwide collection. The pan-genome is composed of 73,528 gene families, of which 23.8%, 42.9%, 29.4% and 3.9% are core, soft core, dispensable and private genes, respectively; 202,884 nonredundant structural variants were also detected. The characterization of pan-genomic variants suggests their importance during foxtail millet domestication and improvement, as exemplified by the identification of the yield gene SiGW3, where a 366-bp presence/absence promoter variant accompanies gene expression variation. We developed a graph-based genome and performed large-scale genetic studies for 68 traits across 13 environments, identifying potential genes for millet improvement at different geographic sites. These can be used in marker-assisted breeding, genomic selection and genome editing to accelerate crop improvement under different climatic conditions.


Subject(s)
Setaria Plant , Chromosome Mapping , Setaria Plant/genetics , Setaria Plant/metabolism , Plant Breeding , Phenotype , Quantitative Trait Loci , Genome, Plant/genetics , Phylogeny , Plant Proteins/genetics
5.
Mol Breed ; 43(3): 15, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37313298

ABSTRACT

Anthocyanin makes snap bean (Phaseolus vulgaris L.) pods purple, which helps seed dispersal and protects against environmental stress. In this study, we characterised the snap bean purple mutant pv-pur, which has purple cotyledon, hypocotyl, stem, leaf vein, flower and pod tissues. Total anthocyanin, delphinidin and malvidin levels in mutant pods were significantly higher than in wild-type plants. We constructed two populations for fine mapping of the PV-PUR purple mutation gene, located in the 243.9-kb region of chromosome 06. We identified Phvul.006g018800.3, encoding F3'5'H, as a candidate gene for PV-PUR. Six single-base mutations occurred in the coding region of this gene, altering protein structure. PV-PUR and pv-pur genes were transferred into Arabidopsis, respectively. Compared with the wild-type, the leaf base and internode of T-PV-PUR plant were purple, and the phenotype of T-pv-pur plant remained unchanged, which verified the function of the mutant gene. The results demonstrated that PV-PUR is a crucial gene for anthocyanin biosynthesis in snap bean, resulting in purple colouration. The findings lay a foundation for future breeding and improvement of snap bean. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01362-8.

6.
Appl Spectrosc ; 77(7): 710-722, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37246428

ABSTRACT

Germination rate is important for seed selection and planting and quality. In this study, hyperspectral image technology integrated with germination tests was applied for feature association analysis and germination performance prediction of sugarbeet seeds. In this study, we proposed a nondestructive prediction method for sugarbeet seed germination. Sugarbeet seed was studied, and hyperspectral imaging (HIS) performed by binarization, morphology, and contour extraction was applied as a nondestructive and accurate technique to achieve single seed image segmentation. Comparative analysis of nine spectral pretreatment methods, SNV + 1D was used to process the average spectrum of sugarbeet seeds. Fourteen characteristic wavelengths were obtained by the Kullback-Leibler (KL) divergence, as the spectral characteristics of sugarbeet seeds. Principal component analysis (PCA) and material properties verified the validity of the extracted characteristic wavelengths. It was extracted of six image features of the hyperspectral image of a single seed obtained based on the gray-level co-occurrence matrix (GLCM). The spectral features, image features, and fusion features were used to establish partial least squares discriminant analysis (PLS-DA), CatBoost, and support vector machine radial-basis function (SVM-RBF) models respectively to predict the germination. The results showed that the prediction effect of fusion features was better than spectral features and image features. By comparing other models, the prediction results of the CatBoost model accuracy were up to 93.52%. The results indicated that, based on HSI and fusion features, the prediction of germinating sugarbeet seeds was more accurate and nondestructive.


Subject(s)
Seeds , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Germination , Hyperspectral Imaging , Principal Component Analysis , Support Vector Machine
7.
BMC Plant Biol ; 23(1): 85, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759761

ABSTRACT

Cold temperatures can be detrimental to crop survival and productivity. Breeding progress can be improved by understanding the molecular basis of low temperature tolerance. We investigated the key routes and critical metabolites related to low temperature resistance in cold-tolerant and -sensitive common bean cultivars 120 and 093, respectively. Many potential genes and metabolites implicated in major metabolic pathways during the chilling stress response were identified through transcriptomics and metabolomics research. Under chilling stress, the expression of many genes involved in lipid, amino acid, and flavonoid metabolism, as well as metabolite accumulation increased in the two bean types. Malondialdehyde (MDA) content was lower in 120 than in 093. Regarding amino acid metabolism, 120 had a higher concentration of acidic amino acids than 093, whereas 093 had a higher concentration of basic amino acids. Methionine accumulation was clearly higher in 120 than in 093. In addition, 120 had a higher concentration of many types of flavonoids than 093. Flavonoids, methionine and malondialdehyde could be used as biomarkers of plant chilling injury. Transcriptome analysis of hormone metabolism revealed considerably greater, expression of abscisic acid (ABA), gibberellin (GA), and jasmonic acid (JA) in 093 than in 120 during chilling stress, indicating that hormone regulation modes in 093 and 120 were different. Thus, chilling stress tolerance is different between 093 and 120 possibly due to transcriptional and metabolic regulation.


Subject(s)
Phaseolus , Phaseolus/genetics , Phaseolus/metabolism , Cold-Shock Response/genetics , Transcriptome , Plant Breeding , Gene Expression Profiling , Metabolomics , Cold Temperature , Flavonoids/metabolism , Amino Acids/metabolism , Methionine/metabolism , Hormones/metabolism , Gene Expression Regulation, Plant
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121169, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35358780

ABSTRACT

As a common problem in snap beans, hard seed has seriously affected the large-scale industrial planting and yield of snap bean. To realize accurate, quick and non-destructive identifying the hard seeds of snap bean is of great significance to avoiding the effects of hard seeds on germination and growth. This research was based on hyperspectral imaging (HSI) to achieve accurate detection of hard seeds of snap bean. This study obtained the characteristic spectra from the hyperspectral image of a single seed, and then combined the synthetic minority over-sampling technique (SMOTE) and Tomek links to balance the numbers of hard and non-hard seed samples. The characteristic wavelengths were extracted from the average spectrum. Then the average spectrum was processed by first derivative (1D). After that, the characteristic wavelengths could be extracted using successive projections algorithm (SPA). Finally, a radial basis function-support vector machine (RBF-SVM) model was established to realize the intelligent detection of hard seeds, and the detection accuracy rate reached 89.32%. The research results showed that HSI technology could achieved accurate, fast and non-destructive testing of the hard seeds of snap bean, which is of great significance to the large-scale and standardized planting of snap bean and increase the yield per unit area.


Subject(s)
Hyperspectral Imaging , Seeds , Algorithms , Support Vector Machine
9.
Int J Mol Sci ; 23(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35163188

ABSTRACT

Pod color is a major economic trait of snap beans (Phaseolus vulgaris L.), among which the pod with a purple stripe is more attractive to people. A stable purple mutant with purple stripes on the pods was obtained by artificial mutagenesis with the high generation snap bean inbred line 'A18-1'. In order to reveal the genetic factors and pathways responsible for the purple appearance in snap bean, we performed transcriptome and metabolome analyses using the green stem and yellow pod cultivar 'A18-1' and its purple mutant 'pv-pur' via 60Co-γ radiation. Transcriptome analysis showed that three genes in the anthocyanin biosynthetic pathway were differentially expressed, among which the expression level of F3'5'H (Phvul.006G018800) was increased in the mutant 'pv-pur', while expression of F3'H (Phvul.004G021200) and ANS (Phvul.002G152700) was downregulated. Anthocyanin-targeted metabonomics analysis showed significant differences in the contents of 10 metabolites between the wild type and mutant plants. Combined analysis of transcriptome and metabolomics showed that one differential metabolite, delphinidin, was related to the differential expression of Phvul.006G024700, Phvul.002G152700, and Phvul.006G018800. Based on the levels of six anthocyanins in wild type and mutant plants, we speculative that the purple appearance of the mutant 'pv-pur' is caused by the increased expression of F3'5'H (Phvul.006G018800), the key enzyme in the transformation from dihydroflavanol (DHK) to dihydromyricetone (DHM) in the anthocyanin biosynthetic pathway. The results lay a foundation for further studies on the molecular mechanism of anthocyanin synthesis in snap bean, and provide a framework for breeding different colors of snap bean.


Subject(s)
Phaseolus/genetics , Pigmentation/genetics , Anthocyanins/metabolism , Color , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Phenotype , Plant Proteins/genetics , Transcriptome/genetics
10.
Theor Appl Genet ; 134(11): 3773-3784, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34338807

ABSTRACT

KEY MESSAGE: Using bulked segregant analysis combined with next-generation sequencing, we delimited the pv-ye gene responsible for the golden pod trait of snap bean cultivar A18-1. Sequence analysis identified Phvul.002G006200 as the candidate gene. The pod is the main edible part of snap beans (Phaseolus vulgaris L.). The commercial use of the pods is mainly affected by their color. Consumers seem to prefer golden pods. The aim of the present study was to identify the gene responsible for the golden pod trait in the snap bean. 'A18-1' (a golden bean cultivar) and 'Renaya' (a green bean cultivar) were chosen as the experimental materials. Genetic analysis indicated that a single recessive gene, pv-ye, controls the golden pod trait. A candidate region of 4.24 Mb was mapped to chromosome Pv 02 using bulked-segregant analysis coupled with whole-genome sequencing. In this region, linkage analysis in an F2 population localized the pv-ye gene to an interval of 182.9 kb between the simple sequence repeat markers SSR77 and SSR93. This region comprised 16 genes (12 annotated genes from the P. vulgaris database and 4 functionally unknown genes). Combined with transcriptome sequencing results, we identified Phvul.002G006200 as the potential candidate gene for pv-ye. Sequencing of Phvul.002G006200 identified a single-nucleotide polymorphism (SNP) in pv-ye. A pair of primers covering the SNP were designed, and the fragment was sequenced to screen 1086 F2 plants with the 'A18-1' phenotype. Our findings showed that among the 1086 mapped individuals, the SNP cosegregated with the 'A18-1' phenotype. The findings presented here could form the basis to reveal the molecular mechanism of the golden pod trait in the snap bean.


Subject(s)
Genes, Plant , Genes, Recessive , Phaseolus/genetics , Pigmentation/genetics , Base Sequence , Carotenoids , Chlorophyll/biosynthesis , Chromosome Mapping , Color , Genetic Linkage , Genetic Markers , Microsatellite Repeats , Phenotype
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 253: 119585, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33662700

ABSTRACT

How to quickly and accurately select sugarbeet seeds with reliable germination is very important to sugarbeet planting. In this study, the hyperspectral images of 3072 sugarbeet seeds of the same variety were collected, and were successively processed by binarization, morphology, contour extraction and so on. The average spectrum of the single seed image was obtained by image segmentation. Comprehensive analysis of the evaluation parameters of the five spectral preprocessing methods revealed that the second derivative (2D) processing was optimal. Successive projections algorithm (SPA) was used to extract 16 characteristic wavelengths. Support vector machine radial basis function (SVM-RBF), k-nearest neighbor (KNN) and random forest (RF) models were established at the full wavelength and characteristic wavelength respectively to predict the germination of sugarbeet seeds. By analyzing the prediction accuracy of the three models, it was found that the SVM-RBF model provided the highest prediction accuracy in the test set (the prediction accuracy of the full wavelength was 95.5%, and the prediction accuracy of the characteristic wavelength was 92.32%). The research results showed that the hyperspectral image processing technology could accurately predict the germination rate of sugarbeet seeds, and realize the rapid and non-destructive prediction of the germination status of sugarbeet seeds.


Subject(s)
Germination , Support Vector Machine , Algorithms , Image Processing, Computer-Assisted , Seeds
12.
Mol Genet Genomics ; 296(2): 379-390, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33449160

ABSTRACT

Common bean (Phaseolus vulgaris L.) is a short-day plant and its flowering time, and consequently, pod yield and quality is influenced by photoperiod. In this study, the photoperiodic-sensitive variety 'Hong jin gou', which flowers 31 days (d) earlier in short-day than in long-day, was used as the experimental material. Samples were collected to determine the growth and photosynthetic parameters in each daylength treatment, and transcriptome and metabolome data were conducted. We identified eight genes related to flowering by further screening for differentially expressed genes. These genes function to regulate the biological clock. The combination of differentially expressed genes and metabolites, together with the known regulation network of flowering time and the day-night expression pattern of related genes allow us to speculate on the regulation of flowering time in the common bean and conclude that TIMING OF CAB EXPRESSION1 (TOC1) plays a pivotal role in the network and its upregulation or downregulation causes corresponding changes in the expression of downstream genes. The regulatory network is also influenced by gibberellic acid (GA) and jasmonic acid (JA). These regulatory pathways jointly comprise the flowering regulatory network in common bean.


Subject(s)
Gene Expression Profiling/methods , Metabolomics/methods , Phaseolus/physiology , Transcription Factors/genetics , Biological Clocks , Flowers/physiology , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Gibberellins/pharmacology , Linoleic Acids/pharmacology , Phaseolus/genetics , Phaseolus/metabolism , Photoperiod , Plant Proteins/genetics , Sequence Analysis, RNA
13.
Front Plant Sci ; 12: 746166, 2021.
Article in English | MEDLINE | ID: mdl-35095942

ABSTRACT

Characterization of drought-tolerance mechanisms during the jointing stage in foxtail millet under water-limited conditions is essential for improving the grain yield of this C4 crop species. In this trial, two drought-tolerant and two drought-sensitive cultivars were examined using transcriptomic dissections of three tissues (root, stem, and leaf) under naturally occurring water-limited conditions. We detected a total of 32,170 expressed genes and characterized 13,552 differentially expressed genes (DEGs) correlated with drought treatment. The majority of DEGs were identified in the root tissue, followed by leaf and stem tissues, and the number of DEGs identified in the stems of drought-sensitive cultivars was about two times higher than the drought-tolerant ones. A total of 127 differentially expressed transcription factors (DETFs) with different drought-responsive patterns were identified between drought-tolerant and drought-sensitive genotypes (including MYB, b-ZIP, ERF, and WRKY). Furthermore, a total of 34 modules were constructed for all expressed genes using a weighted gene co-expression network analysis (WGCNA), and seven modules were closely related to the drought treatment. A total of 1,343 hub genes (including RAB18, LEA14, and RD22) were detected in the drought-related module, and cell cycle and DNA replication-related transcriptional pathways were identified as vital regulators of drought tolerance in foxtail millet. The results of this study provide a comprehensive overview of how Setaria italica copes with drought-inflicted environments during the jointing stage through transcriptional regulating strategies in different organs and lays a foundation for the improvement of drought-tolerant cereal cultivars through genomic editing approaches in the future.

14.
Mol Genet Genomics ; 295(6): 1325-1337, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32607601

ABSTRACT

The main edible organ of snap bean (Phaseolus vulgaris L.) is the pod, whose color is a main characteristic affecting its commercial use. Golden pods are popular with consumers; however, color instability affects their commercial exploitation and causes economic losses to the planters. In this study, we focused on the different pod color of two varieties of snap bean. The golden yellow color of snap bean pods is controlled by a single recessive nuclear gene located at 1-4.24 Mb of chromosome 2. To explore the physiological and molecular mechanism of the golden pod color, the golden bean line 'A18-1' and the green bean line 'Renaya' were selected as experimental materials. We analyzed the pigment contents, detected the intermediate products of chlorophyll biosynthesis, and identified differentially expressed genes using RNA-seq. The formation of golden bean pods reflects a chlorophyll deficiency, which was speculated to be caused by impairment of the Mg-protoporphyrin IX to chlorophyllide step. In 'A18-1' and 'Renaya' pods on 10, 14, and 18 days, five genes related to this step were differentially expressed, all of which were protochlorophyllide oxidoreductase (POR) genes. Among them, the expression changes of the Phvul. 004G112700, Phvul.007G157500, and Phvul. 004G112400 genes were consistent with the color change and physiological data during pod development in 'A18-1' and 'Renaya'. We speculated that the altered expression of these three POR genes might be related to changes in the chlorophyllide content. The results might provide insight into the understanding of chlorophyll biosynthesis and crop breeding for snap bean.


Subject(s)
Chlorophyll/metabolism , Gene Expression Regulation, Plant , Phaseolus/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Vicia faba/metabolism , Color , Phaseolus/genetics , Phaseolus/growth & development , Plant Proteins/genetics , Seeds/genetics , Seeds/growth & development , Transcriptome , Vicia faba/genetics , Vicia faba/growth & development
15.
Stem Cell Res Ther ; 11(1): 240, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32552820

ABSTRACT

BACKGROUND: Many studies have shown that long noncoding RNAs (lncRNAs) are closely related to the stimulation of osteogenic differentiation of adipose-derived stem cells (ADSCs) and the prevention of osteoporosis. Current research aimed to investigate the novel lncRNA and explored the function and molecular mechanism of the LINC00314/miR-129-5p/GRM5 axis in regulating osteogenic differentiation of ADSCs. METHODS: LncRNA and miRNA sequencing was performed in normal and osteogenic differentiation-induced ADSCs (osteogenic group). Abnormally expressed lncRNAs and miRNAs were obtained by the R software and the relative expression of LINC00314, miR-129-5p, and GRM5 during osteogenic induction was measured by RT-PCR. ADSCs were then transfected with pcDNA3.1-sh-LINC00314 and agomiR-129-5p. Alizarin red staining (ARS) and alkaline phosphatase (ALP) staining were performed to identify the mechanism of the LINC00314/miR-129-5p/GRM5 axis in regulating osteogenic differentiation of ADSCs. RESULTS: LINC00314 was significantly upregulated in the group of osteogenic-induced ADSCs. LINC00314 and GRM5 mimics increased the early and late markers of osteogenic differentiation, which manifest in not only the markedly increased ALP activity but also higher calcium deposition, while miR-129-5p mimic had the opposite effects. LINC00314 directly targeted miR-129-5p through luciferase reporter assay, and miR-129-5p suppressed GRM5 expression. Moreover, the LINC00314/miR-129-5p/GRM5 regulatory axis activated the Wnt/ß-catenin signaling pathway. CONCLUSIONS: LINC00314 confers contributory function in the osteogenic differentiation of ADSCs and thus the LINC00314/miR-129-5p/GRM5 axis may be a novel mechanism for osteogenic-related disease.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Cell Differentiation , Humans , MicroRNAs/genetics , Osteogenesis/genetics , RNA, Long Noncoding/genetics , Stem Cells , Wnt Signaling Pathway
16.
Genes Genomics ; 41(12): 1445-1455, 2019 12.
Article in English | MEDLINE | ID: mdl-31535316

ABSTRACT

BACKGROUND: Snap bean, Phaseolus vulgaris L., as a warm-season vegetable, low temperature stress seriously affect the yield and quality. At present, little is known about the genes and molecular regulation mechanism in cold response in snap bean exposed to low temperature. OBJECTIVES: Our objectives were to identify the low temperature response genes in snap bean and to examine differences in the gene response between cold-tolerant and cold-sensitive genotypes. METHODS: We used two highly inbred snap bean lines in this study, the cold-tolerant line '120', and the cold-sensitive line '093'. The plants were grown to the three leaf and one heart stage and exposed to 4 °C low temperature. We used RNA sequencing (RNA-seq) to analyze the differences of gene expression. RESULTS: 988 and 874 cold-responsive genes were identified in 'T120 vs CK120' and 'T093 vs CK093' ('T' stands for low temperature treatment, and 'CK' stands for control at room temperature), respectively. Of these, 555 and 442 genes were unique to cold-stressed lines '120' and '093', respectively compared to the control. Our analysis of these differentially expressed genes indicates that Ca2+, ROS, and hormones act as signaling molecules that play important roles in low temperature response in P. vulgaris. Altering the expression of genes in these signaling pathways activates expression of downstream response genes which can interact with other signaling regulatory networks. This may maintained the balance of ROS and hormones, making line '120' more cold-tolerant than line '093'. CONCLUSION: Our results provide a preliminarily understanding of the molecular basis of low temperature response in snap bean, and also establish a foundation for the future genetic improvement of cold sensitivity in snap bean by incorporating genes for cold tolerance.


Subject(s)
Cold Temperature , Cold-Shock Response/genetics , Phaseolus/genetics , Transcriptome , Calcium Signaling , Metabolic Networks and Pathways/genetics , Phaseolus/metabolism , Plant Growth Regulators/physiology , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
PLoS One ; 12(8): e0182556, 2017.
Article in English | MEDLINE | ID: mdl-28809955

ABSTRACT

A diuron-degrading endophyte DP8-1 was isolated from sugarcane root grown in diuron-treated soil in the present study. The endophyte was identified as Neurospora intermedia based on the morphological characteristics and sequence analysis. The fermentation parameters including temperature, pH, inoculation size, carbon source, and initial diuron concentration were also investigated for the optimization of degradation efficiency. The results indicated that strain DP8-1 was capable of degrading up to 99% diuron within 3 days under the optimal degrading condition. The study of degradation spectrum indicated that strain DP8-1 could also degrade and utilize fenuron, monuron, metobromuron, isoproturon, chlorbromuron, linuron, and chlortoluron as substrate for strain growth. On basis of liquid chromatography-mass spectrometry analysis for the products of the degradation of diuron, strain DP8-1 metabolized diuron to produce N-(3,4-dichlorophenyl)-urea and N-(3,4-dichlorophenyl)-N-methylurea through sequential N-dealkylations. In a soil bioaugmentation experiment, the inoculation of strain DP8-1 into diuron-treated soil effectively enhanced the disappearance rate of diuron.


Subject(s)
Biodegradation, Environmental , Diuron/metabolism , Neurospora/metabolism , Saccharum/microbiology , Soil Pollutants/metabolism , Chromatography, Liquid , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...