Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(20): 14919-14929, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738775

ABSTRACT

We proposed a far-infrared tunable metamaterial absorber using vanadium dioxide (VO2) and graphene as controlling materials. The properties of the absorber are investigated theoretically using the finite-difference time-domain (FDTD) technique. It was found that when the Fermi energy level of graphene is fixed at zero, VO2 is in the insulated state, and the metasurface exhibits far-infrared broadband absorption performance, with absorptance exceeding 90% in the wavelength range of 12.6 µm to 23.2 µm. In addition, by elevating the Fermi energy level of graphene, the absorption bandwidth of the device is expanded continuously. When the VO2 is in the metallic state, the device can flexibly transform into a far-infrared narrowband absorber. The device also has the advantage of being insensitive to changes in polarization and incident angle. The origin of the absorption and the tuning principle of the device were analyzed and verified successfully by using an equivalent circuit model (ECM). Besides, we also studied the refraction index sensing characteristics of the absorber. Surprisingly, the absorber exhibits excellent sensing characteristics, and its sensitivity (S) reaches 14.108 µm per RIU and the figure of merit (FOM) is 6.13 per RIU.

2.
Phys Chem Chem Phys ; 26(3): 2463-2471, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38167684

ABSTRACT

In this paper, a novel type of tunable ultra-wide band and double-narrow band artificial electromagnetic absorption device is studied. This work uses a titanium nitride-titanium-tungsten (TiN-Ti-W) composite ring array, a TiN reflector layer, and a silver-titanium dioxide-silver (Ag-TiO2-Ag) three layer composite structure to prepare the absorption layer. The simulation results illustrate that the absorption rate can reach 96.6% when the absorption wavelength is 300-2800 nm. When the light source is backward incidence, ultra-narrow band absorption can occur at specific wavelengths of 465 nm and 932 nm. This proves that the absorber is in good agreement with the impedance matching theory. The research results of this work will provide a theoretical basis for the design and application of solar thermal energy conversion.

3.
Phys Chem Chem Phys ; 25(14): 10136-10142, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36974981

ABSTRACT

In this paper, we design a solar absorber based on the Si3N4-W-Ti-SiO2 insulator-metal-insulator structure and demonstrate it using the finite difference time domain (FDTD) method. The absorption rate of the absorber consisting of a multi-layer structure with cross etching is over 90% in the bandwidth of 500 nm to 2995 nm with an average absorption rate of 98.3%. There are three peaks at 620 nm, 1002 nm and 1761 nm with peak heights of 99.8%, 99.8% and 99.0%, respectively. By analyzing the distribution of electric and magnetic fields in different sections of the absorber, it is found that the physical mechanism of the structure with high absorptivity is due to the interaction of propagating surface plasmon resonance and local surface plasma resonance. The effects of different structural parameters and the angle of incidence of a light source on the absorber absorption are discussed. The absorber can be used in solar thermal systems, thermal photovoltaics and thermoelectronic devices.

4.
Appl Opt ; 61(26): 7644-7652, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36256364

ABSTRACT

In this paper, a band-stop filter based on a surface plasmon polariton metal-insulator-metal is designed and studied. The relationship between wavelength and filter transmittance is simulated using the finite difference time domain method and coupled mode theory. Compared with a single-diamond resonator, the minimum transmittances of the double-diamond resonator and double-rectangular resonator at a fixed wavelength are increased by 11.33% and 14.25%, respectively, achieving an enhancement effect. The research results also show that the sensitivity of the filter can reach 860 nm/RIU. The structure has good application prospects in optical integration, optical communication, and optical information processing.

5.
Nanomaterials (Basel) ; 12(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36234428

ABSTRACT

In this paper, we propose a dual-channel mid-infrared toroidal metasurface that consists of split equilateral triangular rings. The electromagnetic responses are analyzed by the finite-difference-time-domain (FDTD) method and temporal coupled-mode theory (TCMT). The results show that one channel of the metasurface is insensitive to the polarization angle of the incident light and temperature, while the other channel is sensitive. The reflectance and resonance wavelength can be manipulated by the polarization angle and temperature independently. Based on such a mechanism, we propose metasurfaces for two-bit programmable imaging and thermal imaging. The metasurfaces are believed to have potential applications in information processing and thermal radiation manipulation.

6.
Nanomaterials (Basel) ; 12(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630953

ABSTRACT

A dual broadband terahertz bifunction absorber that can be actively tuned is proposed. The optical properties of the absorber were simulated and numerically calculated using the finite-difference time-domain (FDTD) method. The results show that when the conductivity of vanadium dioxide is less than σ0=8.5×103 S/m, the absorptance can be continuously adjusted between 2% and 100%. At vanadium dioxide conductivity greater than σ0=8.5×103 S/m, the absorption bandwidth of the absorber can be switched from 3.4 THz and 3.06 THz to 2.83 THz and none, respectively, and the absorptance remains above 90%. This achieves perfect modulation of the absorptance and absorption bandwidth. The physical mechanism of dual-broadband absorptions and perfect absorption is elucidated by impedance matching theory and electric field distribution. In addition, it also has the advantage of being polarization insensitive and maintaining stable absorption at wide angles of oblique incidence. The absorber may have applications in emerging fields such as modulators, stealth and light-guided optical switches.

SELECTION OF CITATIONS
SEARCH DETAIL
...