Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ArXiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38351927

ABSTRACT

Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally-fractionated PBSPT due to concerns of amplified uncertainties at the larger dose per fraction. NRG Oncology and Particle Therapy Cooperative Group (PTCOG) Thoracic Subcommittee surveyed US proton centers to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Amongst other points, the recommendations highlight the need for volumetric image guidance and multiple CT-based robust optimization and robustness tools to minimize further the impact of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.

2.
Article in English | MEDLINE | ID: mdl-38395086

ABSTRACT

Stereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction. The NRG Oncology and Particle Therapy Cooperative Group Thoracic Subcommittee surveyed proton centers in the United States to identify practice patterns of thoracic PBSPT SBRT/hypofractionation. From these patterns, we present recommendations for future technical development of proton SBRT/hypofractionation for thoracic treatment. Among other points, the recommendations highlight the need for volumetric image guidance and multiple computed tomography-based robust optimization and robustness tools to minimize further the effect of uncertainties associated with respiratory motion. Advances in direct motion analysis techniques are urgently needed to supplement current motion management techniques.

3.
Med Phys ; 51(3): 2187-2199, 2024 Mar.
Article in Italian | MEDLINE | ID: mdl-38319676

ABSTRACT

BACKGROUND: Efficient and accurate delineation of organs at risk (OARs) is a critical procedure for treatment planning and dose evaluation. Deep learning-based auto-segmentation of OARs has shown promising results and is increasingly being used in radiation therapy. However, existing deep learning-based auto-segmentation approaches face two challenges in clinical practice: generalizability and human-AI interaction. A generalizable and promptable auto-segmentation model, which segments OARs of multiple disease sites simultaneously and supports on-the-fly human-AI interaction, can significantly enhance the efficiency of radiation therapy treatment planning. PURPOSE: Meta's segment anything model (SAM) was proposed as a generalizable and promptable model for next-generation natural image segmentation. We further evaluated the performance of SAM in radiotherapy segmentation. METHODS: Computed tomography (CT) images of clinical cases from four disease sites at our institute were collected: prostate, lung, gastrointestinal, and head & neck. For each case, we selected the OARs important in radiotherapy treatment planning. We then compared both the Dice coefficients and Jaccard indices derived from three distinct methods: manual delineation (ground truth), automatic segmentation using SAM's 'segment anything' mode, and automatic segmentation using SAM's 'box prompt' mode that implements manual interaction via live prompts during segmentation. RESULTS: Our results indicate that SAM's segment anything mode can achieve clinically acceptable segmentation results in most OARs with Dice scores higher than 0.7. SAM's box prompt mode further improves Dice scores by 0.1∼0.5. Similar results were observed for Jaccard indices. The results show that SAM performs better for prostate and lung, but worse for gastrointestinal and head & neck. When considering the size of organs and the distinctiveness of their boundaries, SAM shows better performance for large organs with distinct boundaries, such as lung and liver, and worse for smaller organs with less distinct boundaries, like parotid and cochlea. CONCLUSIONS: Our results demonstrate SAM's robust generalizability with consistent accuracy in automatic segmentation for radiotherapy. Furthermore, the advanced box-prompt method enables the users to augment auto-segmentation interactively and dynamically, leading to patient-specific auto-segmentation in radiation therapy. SAM's generalizability across different disease sites and different modalities makes it feasible to develop a generic auto-segmentation model in radiotherapy.


Subject(s)
Deep Learning , Radiation Oncology , Male , Humans , Artificial Intelligence , Neural Networks, Computer , Tomography, X-Ray Computed/methods , Organs at Risk , Radiotherapy Planning, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods
4.
Phys Med Biol ; 69(3)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37944480

ABSTRACT

Purpose. To enhance an in-house graphic-processing-unit accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS).Methods and materials. A module to simulate VPs passing through patient-specific aperture blocks was developed and integrated in VPMC based on simulation results of realistic particles (primary protons and their secondaries). To validate the aperture block module, VPMC was first validated by an opensource MC code, MCsquare, in eight water phantom simulations with 3 cm thick brass apertures: four were with aperture openings of 1, 2, 3, and 4 cm without a range shifter, while the other four were with same aperture opening configurations with a range shifter of 45 mm water equivalent thickness. Then, VPMC was benchmarked with MCsquare and RayStation MC for 10 patients with small targets (average volume 8.4 c.c. with range of 0.4-43.3 c.c.). Finally, 3 typical patients were selected for robust optimization with aperture blocks using VPMC.Results. In the water phantoms, 3D gamma passing rate (2%/2 mm/10%) between VPMC and MCsquare was 99.71 ± 0.23%. In the patient geometries, 3D gamma passing rates (3%/2 mm/10%) between VPMC/MCsquare and RayStation MC were 97.79 ± 2.21%/97.78 ± 1.97%, respectively. Meanwhile, the calculation time was drastically decreased from 112.45 ± 114.08 s (MCsquare) to 8.20 ± 6.42 s (VPMC) with the same statistical uncertainties of ~0.5%. The robustly optimized plans met all the dose-volume-constraints (DVCs) for the targets and OARs per our institutional protocols. The mean calculation time for 13 influence matrices in robust optimization by VPMC was 41.6 s and the subsequent on-the-fly 'trial-and-error' optimization procedure took only 71.4 s on average for the selected three patients.Conclusion. VPMC has been successfully enhanced to model aperture blocks in dose calculation and optimization for the PBSPT-based SRS.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Radiotherapy Dosage , Algorithms , Radiotherapy Planning, Computer-Assisted/methods , Protons , Monte Carlo Method , Phantoms, Imaging , Water
5.
ArXiv ; 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37461414

ABSTRACT

Purpose: To enhance an in-house graphic-processing-unit (GPU) accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS). Methods and Materials: A module to simulate VPs passing through patient-specific aperture blocks was developed and integrated in VPMC based on simulation results of realistic particles (primary protons and their secondaries). To validate the aperture block module, VPMC was first validated by an opensource MC code, MCsquare, in eight water phantom simulations with 3cm thick brass apertures: four were with aperture openings of 1, 2, 3, and 4cm without a range shifter, while the other four were with same aperture opening configurations with a range shifter of 45mm water equivalent thickness. Then, VPMC was benchmarked with MCsquare and RayStation MC for 10 patients with small targets (average volume 8.4 cc with range of 0.4 - 43.3 cc). Finally, 3 typical patients were selected for robust optimization with aperture blocks using VPMC. Results: In the water phantoms, 3D gamma passing rate (2%/2mm/10%) between VPMC and MCsquare was 99.71±0.23%. In the patient geometries, 3D gamma passing rates (3%/2mm/10%) between VPMC/MCsquare and RayStation MC were 97.79±2.21%/97.78±1.97%, respectively. Meanwhile, the calculation time was drastically decreased from 112.45±114.08 seconds (MCsquare) to 8.20±6.42 seconds (VPMC) with the same statistical uncertainties of ~0.5%. The robustly optimized plans met all the dose-volume-constraints (DVCs) for the targets and OARs per our institutional protocols. The mean calculation time for 13 influence matrices in robust optimization by VPMC was 41.6 seconds and the subsequent on-the-fly "trial-and-error" optimization procedure took only 71.4 seconds on average for the selected three patients. Conclusion: VPMC has been successfully enhanced to model aperture blocks in dose calculation and optimization for the PBSPT-based SRS.

6.
Med Phys ; 50(11): 6864-6880, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37289193

ABSTRACT

BACKGROUND: Deformable Image Registration (DIR) is an essential technique required in many applications of radiation oncology. However, conventional DIR approaches typically take several minutes to register one pair of 3D CT images and the resulting deformable vector fields (DVFs) are only specific to the pair of images used, making it less appealing for clinical application. PURPOSE: A deep-learning-based DIR method using CT images is proposed for lung cancer patients to address the common drawbacks of the conventional DIR approaches and in turn can accelerate the speed of related applications, such as contour propagation, dose deformation, adaptive radiotherapy (ART), etc. METHODS: A deep neural network based on VoxelMorph was developed to generate DVFs using CT images collected from 114 lung cancer patients. Two models were trained with the weighted mean absolute error (wMAE) loss and structural similarity index matrix (SSIM) loss (optional) (i.e., the MAE model and the M+S model). In total, 192 pairs of initial CT (iCT) and verification CT (vCT) were included as a training dataset and the other independent 10 pairs of CTs were included as a testing dataset. The vCTs usually were taken 2 weeks after the iCTs. The synthetic CTs (sCTs) were generated by warping the vCTs according to the DVFs generated by the pre-trained model. The image quality of the synthetic CTs was evaluated by measuring the similarity between the iCTs and the sCTs generated by the proposed methods and the conventional DIR approaches, respectively. Per-voxel absolute CT-number-difference volume histogram (CDVH) and MAE were used as the evaluation metrics. The time to generate the sCTs was also recorded and compared quantitatively. Contours were propagated using the derived DVFs and evaluated with SSIM. Forward dose calculations were done on the sCTs and the corresponding iCTs. Dose volume histograms (DVHs) were generated based on dose distributions on both iCTs and sCTs generated by two models, respectively. The clinically relevant DVH indices were derived for comparison. The resulted dose distributions were also compared using 3D Gamma analysis with thresholds of 3 mm/3%/10% and 2 mm/2%/10%, respectively. RESULTS: The two models (wMAE and M+S) achieved a speed of 263.7±163 / 265.8±190 ms and a MAE of 13.15±3.8 / 17.52±5.8 HU for the testing dataset, respectively. The average SSIM scores of 0.987±0.006 and 0.988±0.004 were achieved by the two proposed models, respectively. For both models, CDVH of a typical patient showed that less than 5% of the voxels had a per-voxel absolute CT-number-difference larger than 55 HU. The dose distribution calculated based on a typical sCT showed differences of ≤2cGy[RBE] for clinical target volume (CTV) D95 and D5 , within ±0.06% for total lung V5 , ≤1.5cGy[RBE] for heart and esophagus Dmean , and ≤6cGy[RBE] for cord Dmax compared to the dose distribution calculated based on the iCT. The good average 3D Gamma passing rates (> 96% for 3 mm/3%/10% and > 94% for 2 mm/2%/10%, respectively) were also observed. CONCLUSION: A deep neural network-based DIR approach was proposed and has been shown to be reasonably accurate and efficient to register the initial CTs and verification CTs in lung cancer.


Subject(s)
Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed
7.
ArXiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131881

ABSTRACT

PURPOSE: In some proton therapy facilities, patient alignment relies on two 2D orthogonal kV images, taken at fixed, oblique angles, as no 3D on-the-bed imaging is available. The visibility of the tumor in kV images is limited since the patient's 3D anatomy is projected onto a 2D plane, especially when the tumor is behind high-density structures such as bones. This can lead to large patient setup errors. A solution is to reconstruct the 3D CT image from the kV images obtained at the treatment isocenter in the treatment position. METHODS: An asymmetric autoencoder-like network built with vision-transformer blocks was developed. The data was collected from 1 head and neck patient: 2 orthogonal kV images (1024x1024 voxels), 1 3D CT with padding (512x512x512) acquired from the in-room CT-on-rails before kVs were taken and 2 digitally-reconstructed-radiograph (DRR) images (512x512) based on the CT. We resampled kV images every 8 voxels and DRR and CT every 4 voxels, thus formed a dataset consisting of 262,144 samples, in which the images have a dimension of 128 for each direction. In training, both kV and DRR images were utilized, and the encoder was encouraged to learn the jointed feature map from both kV and DRR images. In testing, only independent kV images were used. The full-size synthetic CT (sCT) was achieved by concatenating the sCTs generated by the model according to their spatial information. The image quality of the synthetic CT (sCT) was evaluated using mean absolute error (MAE) and per-voxel-absolute-CT-number-difference volume histogram (CDVH). RESULTS: The model achieved a speed of 2.1s and a MAE of <40HU. The CDVH showed that <5% of the voxels had a per-voxel-absolute-CT-number-difference larger than 185 HU. CONCLUSION: A patient-specific vision-transformer-based network was developed and shown to be accurate and efficient to reconstruct 3D CT images from kV images.

8.
Med Phys ; 49(10): 6666-6683, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35960865

ABSTRACT

BACKGROUND: In proton therapy dose calculation, Monte Carlo (MC) simulations are superior in accuracy but more time consuming, compared to analytical calculations. Graphic processing units (GPUs) are effective in accelerating MC simulations but may suffer thread divergence and racing condition in GPU threads that degrades the computing performance due to the generation of secondary particles during nuclear reactions. PURPOSE: A novel concept of virtual particle (VP) MC (VPMC) is proposed to avoid simulating secondary particles in GPU-accelerated proton MC dose calculation and take full advantage of the computing power of GPU. METHODS: Neutrons and gamma rays were ignored as escaping from the human body; doses of electrons, heavy ions, and nuclear fragments were locally deposited; the tracks of deuterons were converted into tracks of protons. These particles, together with primary and secondary protons, are considered to be the realistic particles. Histories of primary and secondary protons were replaced by histories of multiple VPs. Each VP corresponded to one proton (either primary or secondary). A continuous-slowing-down-approximation model, an ionization model, and a large angle scattering event model corresponding to nuclear interactions were developed for VPs by generating probability distribution functions (PDFs) based on simulation results of realistic particles using MCsquare. For efficient calculations, these PDFs were stored in the Compute Unified Device Architecture textures. VPMC was benchmarked with TOPAS and MCsquare in phantoms and with MCsquare in 13 representative patient geometries. Comparisons between the VPMC calculated dose and dose measured in water during patient-specific quality assurance (PSQA) of the selected 13 patients were also carried out. Gamma analysis was used to compare the doses derived from different methods and calculation efficiencies were also compared. RESULTS: Integrated depth dose and lateral dose profiles in both homogeneous and inhomogeneous phantoms all matched well among VPMC, TOPAS, and MCsquare calculations. The 3D-3D gamma passing rates with a criterion of 2%/2 mm and a threshold of 10% was 98.49% between MCsquare and TOPAS and 98.31% between VPMC and TOPAS in homogeneous phantoms, and 99.18% between MCsquare and TOPAS and 98.49% between VPMC and TOPAS in inhomogeneous phantoms, respectively. In patient geometries, the 3D-3D gamma passing rates with 2%/2 mm/10% between dose distributions from VPMC and MCsquare were 98.56 ± 1.09% in patient geometries. The 2D-3D gamma analysis with 3%/2 mm/10% between the VPMC calculated dose distributions and the 2D measured planar dose distributions during PSQA was 98.91 ± 0.88%. VPMC calculation was highly efficient and took 2.84 ± 2.44 s to finish for the selected 13 patients running on four NVIDIA Ampere GPUs in patient geometries. CONCLUSION: VPMC was found to achieve high accuracy and efficiency in proton therapy dose calculation.


Subject(s)
Proton Therapy , Deuterium , Humans , Monte Carlo Method , Proton Therapy/methods , Protons , Water
9.
Med Phys ; 49(6): 3550-3563, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35443080

ABSTRACT

PURPOSE: To develop an online graphic processing unit (GPU)-accelerated Monte Carlo-based adaptive radiation therapy (ART) workflow for pencil beam scanning (PBS) proton therapy to address interfraction anatomical changes in patients treated with PBS. METHODS AND MATERIALS: A four-step workflow was developed using our in-house developed GPU-accelerated Monte Carlo-based treatment planning system to implement online Monte Carlo-based ART for PBS. The first step conducts diffeomorphic demon-based deformable image registration (DIR) to propagate contours on the initial planning CT (pCT) to the verification CT (vCT) to form a new structure set. The second step performs forward dose calculation of the initial plan on the vCT with the propagated contours after manual approval (possible modifications involved). The third step triggers a reoptimization of the plan depending on whether the verification dose meets the clinical requirements or not. A robust evaluation will be done for both the verification plan in the second step and the reopotimized plan in the third step. The fourth step involves a two-stage (before and after delivery) patient-specific quality assurance (PSQA) of the reoptimized plan. The before-delivery PSQA is to compare the plan dose to the dose calculated using an independent fast open-source Monte Carlo code, MCsquare. The after-delivery PSQA is to compare the plan dose to the dose recalculated using the log file (spot MU, spot position, and spot energy) collected during the delivery. Jaccard index (JI), dice similarity coefficients (DSCs), and Hausdorff distance (HD) were used to assess the quality of the propagated contours in the first step. A commercial plan evaluation software, ClearCheck™, was integrated into the workflow to carry out efficient plan evaluation. 3D Gamma analysis was used during the fourth step to ensure the accuracy of the plan dose from reoptimization. Three patients with three different disease sites were chosen to evaluate the feasibility of the online ART workflow for PBS. RESULTS: For all three patients, the propagated contours were found to have good volume conformance [JI (lowest-highest: 0.833-0.983) and DSC (0.909-0.992)] but suboptimal boundary coincidence [HD (2.37-20.76 mm)] for organs-at-risk. The verification dose evaluated by ClearCheck™ showed significant degradation of the target coverage due to the interfractional anatomical changes. Reoptimization on the vCT resulted in great improvement of the plan quality to a clinically acceptable level. 3D Gamma analyses of PSQA confirmed the accuracy of the plan dose before delivery (mean Gamma index = 98.74% with a threshold of 2%/2 mm/10%), and after delivery based on the log files (mean Gamma index = 99.05% with a threshold of 2%/2 mm/10%). The average time cost for the complete execution of the workflow was around 858 s, excluding the time for manual intervention. CONCLUSION: The proposed online ART workflow for PBS was demonstrated to be efficient and effective by generating a reoptimized plan that significantly improved the plan quality.


Subject(s)
Proton Therapy , Feasibility Studies , Humans , Monte Carlo Method , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
10.
Med Phys ; 49(1): 632-647, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34843119

ABSTRACT

PURPOSE: Due to the employment of quadratic programming using soft constraints to implement dose volume constraints and the "trial-and-error" procedure needed to achieve a clinically acceptable plan, conventional dose volume constraints (upper limit) are not adequately effective in controlling small and isolated hot spots in the dose/linear energy transfer (LET) distribution. Such hot spots can lead to adverse events. In order to mitigate the risk of brain necrosis, one of the most clinically significant adverse events in patients receiving intensity-modulated proton therapy (IMPT) for base of skull (BOS) cancer, we propose per-voxel constraints to minimize hot spots in LET-guided robust optimization. METHODS AND MATERIALS: Ten BOS cancer patients treated with IMPT were carefully selected by meeting one of the following conditions: (1) diagnosis of brain necrosis during follow-up; and (2) considered high risk for brain necrosis by not meeting dose constraints to the brain. An optimizing structure (BrainOPT) and an evaluating structure (BrainROI) that both contained the aforementioned hot dose regions in the brain were generated for optimization and evaluation, respectively. Two plans were generated for every patient: one using conventional dose-only robust optimization, the other using LET-guided robust optimization. The impact of LET was integrated into the optimization via a term of extra biological dose (xBD). A novel optimization tool of per-voxel constraints to control small and isolated hot spots in either the dose, LET, or combined (dose/LET) distribution was developed and used to minimize dose/LET hot spots of the selected structures. Indices from dose-volume histogram (DVH) and xBD dose-volume histogram (xBDVH) were used in the plan evaluation. A newly developed tool of the dose-LET-volume histogram (DLVH) was also adopted to illustrate the underlying mechanism. Wilcoxon signed-rank test was used for statistical comparison of the DVH and xBDVH indices between the conventional dose-only and the LET-guided robustly optimized plans. RESULTS: Per-voxel constraints effectively and efficiently minimized dose hot spots in both dose-only and LET-guided robust optimization and LET hot spots in LET-guided robust optimization. Compared to the conventional dose-only robust optimization, the LET-guided robust optimization could generate plans with statistically lower xBD hot spots in BrainROI (VxBD,50 Gy[RBE], p = 0.009; VxBD,60 Gy[RBE], p = 0.025; xBD1cc, p = 0.017; xBD2cc, p = 0.022) with comparable dose coverage, dose hot spots in the target, and dose hot spots in BrainROI. DLVH analysis indicated that LET-guided robust optimization could either reduce LET at the same dose level or redistribute high LET from high dose regions to low dose regions. CONCLUSION: Per-voxel constraint is a powerful tool to minimize dose/LET hot spots in IMPT. The LET-guided robustly optimized plans outperformed the conventional dose-only robustly optimized plans in terms of xBD hot spots control.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Head and Neck Neoplasms/radiotherapy , Humans , Linear Energy Transfer , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/adverse effects , Skull Base
11.
Med Phys ; 48(8): 4636-4647, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34058026

ABSTRACT

PURPOSE: To compare the dosimetric performances of small-spot three-dimensional (3D) and four-dimensional (4D) robustly optimized intensity-modulated proton (IMPT) plans in the presence of uncertainties and interplay effect simultaneously for distal esophageal carcinoma. METHOD AND MATERIALS: Thirteen (13) patients were selected and re-planned with small-spot ( σ  ~ 2-6 mm) 3D and 4D robust optimization in IMPT, respectively. The internal clinical target volumes (CTVhigh3d , CTVlow3d ) were used in 3D robust optimization. Different CTVs (CTVhigh4d , CTVlow4d ) were generated by subtracting an inner margin of the motion amplitudes in three cardinal directions from the internal CTVs and used in 4D robust optimization. All patients were prescribed the same dose to CTVs (50 Gy[RBE] for CTVhigh3d /CTVhigh4d and 45 Gy[RBE] for CTVlow3d /CTVlow4d ). Dose-volume histogram (DVH) indices were calculated to assess plan quality. Comprehensive plan robustness evaluations that consisted of 300 perturbed scenarios (10 different motion patterns to consider irregular motion (sampled from a Gaussian distribution) and 30 different uncertainties scenarios (sampled from a 4D uniform distribution) combined), were performed to quantify robustness to uncertainties and interplay effect simultaneously. Wilcoxon signed-rank test was used for statistical analysis. RESULTS: Compared to 3D robustly optimized plans, 4D robustly optimized plans had statistically improved target coverage and better sparing of lungs and heart (heart Dmean , P = 0.001; heart V30Gy[RBE] , P = 0.001) in the nominal scenario. 4D robustly optimized plans had better robustness in target dose coverage (CTVhigh4d V100% , P = 0.002) and the protection of lungs and heart (heart Dmean , P = 0.001; heart V30Gy[RBE] , P = 0.001) when uncertainties and interplay effect were considered simultaneously. CONCLUSIONS: Even with small spots in IMPT, 4D robust optimization outperformed 3D robust optimization in terms of normal tissue protection and robustness to uncertainties and interplay effect simultaneously. Our findings support the use of 4D robust optimization to treat distal esophageal carcinoma with small spots in IMPT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma , Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
12.
J Appl Clin Med Phys ; 21(11): 141-152, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33058523

ABSTRACT

PURPOSE: To compare the dosimetric performances of intensity-modulated proton therapy (IMPT) plans generated with two different beam angle configurations (the Right-Left oblique posterior beams and the Superior-Inferior oblique posterior beams) for the treatment of distal esophageal carcinoma in the presence of uncertainties and interplay effect. METHODS AND MATERIALS: Twenty patients' IMPT plans were retrospectively selected, with 10 patients treated with the R-L oblique posterior beams (Group R-L) and the other 10 patients treated with the S-I oblique posterior beams (Group S-I). Patients in both groups were matched by their clinical target volumes (CTVs-high and low dose levels) and respiratory motion amplitudes. Dose-volume-histogram (DVH) indices were used to assess plan quality. DVH bandwidth was calculated to evaluate plan robustness. Interplay effect was quantified using four-dimensional (4D) dynamic dose calculation with random respiratory starting phase of each fraction. Normal tissue complication probability (NTCP) for heart, liver, and lung was calculated, respectively, to estimate the clinical outcomes. Wilcoxon signed-rank test was used for statistical comparison between the two groups. RESULTS: Compared with plans in Group R-L, plans in Group S-I resulted in significantly lower liver Dmean and lung V30Gy[RBE] with slightly higher but clinically acceptable spinal cord Dmax . Similar plan robustness was observed between the two groups. When interplay effect was considered, plans in Group S-I performed statistically better for heart Dmean and V30Gy[RBE] , lung Dmean and V5Gy[RBE] , and liver Dmean , with slightly increased but clinically acceptable spinal cord Dmax . NTCP for liver was significantly better in Group S-I. CONCLUSIONS: IMPT plans in Group S-I have better sparing of liver, heart, and lungs at the slight cost of spinal cord maximum dose protection, and are more interplay-effect resilient compared to IMPT plans in Group R-L. Our study supports the routine use of the S-I oblique posterior beams for the treatments of distal esophageal carcinoma.


Subject(s)
Carcinoma , Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...