Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893373

ABSTRACT

Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098-3.97 µM (0.066-2.68 µg mL-1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.


Subject(s)
Antineoplastic Agents , Ferroptosis , Nanomedicine , Humans , Ferroptosis/drug effects , Cell Line, Tumor , Nanomedicine/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Ferric Compounds/chemistry , Tumor Microenvironment/drug effects , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Neoplasms/drug therapy , Neoplasms/pathology
2.
Ecotoxicol Environ Saf ; 279: 116510, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810284

ABSTRACT

Microplastics and organic micropollutants are two emerging contaminants that interact with each other in environmental and engineered systems. Sorption of organic micropollutants, such as pharmaceuticals, pesticides and industrial compounds, to microplastics can modify their bioavailability and biodegradation. The present study investigated the capacity of ultra-high density polyethylene particles (125 µm in diameter), before and after aging, to sorb 21 organic micropollutants at different environmentally relevant concentration. Furthermore, the biodegradation of these organic micropollutants by a biofilm microbial community growing on the microplastic surface was compared with the biodegradation by a microbial community originating from activated sludge. Among all tested organic micropollutants, propranolol (70%), trimethoprim (25%) and sotalol (15%) were sorbed in the presence of polyethylene particles. Growth of a biofilm on the polyethylene particles had a beneficial effect on the sorption of bromoxynil, caffeine and chloridazon and on the biodegradation of irbesartan, atenolol and benzotriazole. On the other hand, the biofilm limited the sorption of trimethoprim, propranolol, sotalol and benzotriazole and the biodegradation of 2,4-D. These results showed that ultra-high density polyethylene particles can affect both in a positive and negative way for the abiotic and biotic removal of organic micropollutants in wastewater. This project highlights the need for further investigation regarding the interaction between microplastics and organic micropollutants in the aquatic environment.


Subject(s)
Biodegradation, Environmental , Biofilms , Microplastics , Polyethylene , Propranolol , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Polyethylene/chemistry , Adsorption , Trimethoprim , Atenolol , Triazoles/chemistry , Sewage/chemistry , Sewage/microbiology
3.
EClinicalMedicine ; 71: 102566, 2024 May.
Article in English | MEDLINE | ID: mdl-38686219

ABSTRACT

Background: Urine cytology is an important non-invasive examination for urothelial carcinoma (UC) diagnosis and follow-up. We aimed to explore whether artificial intelligence (AI) can enhance the sensitivity of urine cytology and help avoid unnecessary endoscopy. Methods: In this multicentre diagnostic study, consecutive patients who underwent liquid-based urine cytology examinations at four hospitals in China were included for model development and validation. Patients who declined surgery and lacked associated histopathology results, those diagnosed with rare subtype tumours of the urinary tract, or had low-quality images were excluded from the study. All liquid-based cytology slides were scanned into whole-slide images (WSIs) at 40 × magnification and the WSI-labels were derived from the corresponding histopathology results. The Precision Urine Cytology AI Solution (PUCAS) was composed of three distinct stages (patch extraction, features extraction, and classification diagnosis) and was trained to identify important WSI features associated with UC diagnosis. The diagnostic sensitivity was mainly used to validate the performance of PUCAS in retrospective and prospective validation cohorts. This study is registered with the ChiCTR, ChiCTR2300073192. Findings: Between January 1, 2018 and October 31, 2022, 2641 patients were retrospectively recruited in the training cohort, and 2335 in retrospective validation cohorts; 400 eligible patients were enrolled in the prospective validation cohort between July 7, 2023 and September 15, 2023. The sensitivity of PUCAS ranged from 0.922 (95% CI: 0.811-0.978) to 1.000 (0.782-1.000) in retrospective validation cohorts, and was 0.896 (0.837-0.939) in prospective validation cohort. The PUCAS model also exhibited a good performance in detecting malignancy within atypical urothelial cells cases, with a sensitivity of over 0.84. In the recurrence detection scenario, PUCAS could reduce 57.5% of endoscopy use with a negative predictive value of 96.4%. Interpretation: PUCAS may help to improve the sensitivity of urine cytology, reduce misdiagnoses of UC, avoid unnecessary endoscopy, and reduce the clinical burden in resource-limited areas. The further validation in other countries is needed. Funding: National Natural Science Foundation of China; Key Program of the National Natural Science Foundation of China; the National Science Foundation for Distinguished Young Scholars; the Science and Technology Planning Project of Guangdong Province; the National Key Research and Development Programme of China; Guangdong Provincial Clinical Research Centre for Urological Diseases.

4.
J Ethnopharmacol ; 328: 118082, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38522625

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Longdan zhike tablet (LDZK) is a Tibetan medicine formula commonly used in the highland region of Tibet, China, to ameliorate respiratory diseases, such as acute bronchitis and asthma. In Chinese traditional medicine, some herbal formulas with anti-inflammatory properties targeting the respiratory system are clinically adopted as supplementary therapies for chronic obstructive pulmonary disease (COPD). However, the specific anti-COPD effects of LDZK remain to be evaluated. AIM OF THE STUDY: The aim of this study is to identify the principal bioactive compounds in LDZK, and elucidate the effects and mechanisms of the LDZK on COPD. METHODS: High-resolution mass spectrometry was utilized for a comprehensive characterization of the chemical composition of LDZK. The therapeutic effects of LDZK were assessed on the LPS-papain-induced COPD mouse model, and LPS-induced activation model of A549 cells. The safety of LDZK was evaluated by orally administering a single dose of 30 g/kg to rats and monitoring physiological and biochemical indicators after a 14-day period. Network pharmacology and Western blot analysis were employed for mechanism prediction of LDZK. RESULTS: A comprehensive analysis identified a total of 45 compounds as the major constituents of LDZK. Oral administration of LDZK resulted in notable ameliorative effects in respiratory function, accompanied by reduced inflammatory cell counts and cytokine levels in the lungs of COPD mice. Acute toxicity tests demonstrated a favorable safety profile at a dose equivalent to 292 times the clinically prescribed dose. In vitro studies revealed that LDZK exhibited protective effects on A549 cells by mitigating LPS-induced cellular damage, reducing the release of NO, and downregulating the expression of iNOS, COX2, IL-1ß, IL-6, and TNF-α. Network pharmacology and Western blot analysis indicated that LDZK primarily modulated the MAPK signaling pathway and inhibited the phosphorylation of p38/ERK/JNK. CONCLUSIONS: LDZK exerts significant therapeutic effects on COPD through the regulation of the MAPK pathway, suggesting its potential as a promising adjunctive therapy for the treatment of chronic inflammation in COPD.


Subject(s)
Medicine, Tibetan Traditional , Pulmonary Disease, Chronic Obstructive , Rats , Mice , Animals , Lipopolysaccharides/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Lung , Signal Transduction
5.
Int J Surg ; 110(5): 2604-2613, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38348891

ABSTRACT

OBJECTIVES: The authors aimed to assess the performance of a deep learning (DL) model, based on a combination of ultrasound (US) and mammography (MG) images, for predicting malignancy in breast lesions categorized as Breast Imaging Reporting and Data System (BI-RADS) US 4A in diagnostic patients with dense breasts. METHODS: A total of 992 patients were randomly allocated into the training cohort and the test cohort at a proportion of 4:1. Another, 218 patients were enrolled to form a prospective validation cohort. The DL model was developed by incorporating both US and MG images. The predictive performance of the combined DL model for malignancy was evaluated by sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The combined DL model was then compared to a clinical nomogram model and to the DL model trained using US image only and to that trained MG image only. RESULTS: The combined DL model showed satisfactory diagnostic performance for predicting malignancy in breast lesions, with an AUC of 0.940 (95% CI: 0.874-1.000) in the test cohort, and an AUC of 0.906 (95% CI: 0.817-0.995) in the validation cohort, which was significantly higher than the clinical nomogram model, and the DL model for US or MG alone ( P <0.05). CONCLUSIONS: The study developed an objective DL model combining both US and MG imaging features, which was proven to be more accurate for predicting malignancy in the BI-RADS US 4A breast lesions of patients with dense breasts. This model may then be used to more accurately guide clinicians' choices about whether performing biopsies in breast cancer diagnosis.


Subject(s)
Breast Density , Breast Neoplasms , Deep Learning , Mammography , Ultrasonography, Mammary , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Middle Aged , Adult , Prospective Studies , Aged , Breast/diagnostic imaging , Breast/pathology , Sensitivity and Specificity , ROC Curve , Predictive Value of Tests
6.
Sci Rep ; 14(1): 483, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177168

ABSTRACT

The expression levels and prognostic role of AP3M2 in colorectal adenocarcinoma (CRAC) have yet to be fully unveiled. Our study comprehensively investigated the clinical significance of AP3M2 in colorectal cancer through an extensive bioinformatics data mining process (TCGA, GEO, GEPIA, Timer, Ualcan, ROCPLOT, and David), followed by experimental validation. We found AP3M2 is a cancer gene, which can be used to distinguish between colorectal cancer and colorectal adenomas, liver metastasis, lung metastasis, colorectal polyp. Higher AP3M2 expression levels were associated with longer overall survival in colon adenocarcinoma. AP3M2 might be the primary biomarker for oxaliplatin in colon cancer and an acquired resistance biomarker for oxaliplatin and 5-fu. AP3M2 was positively associated with CD274, CTLA4. AP3M2 might be associated with T-cell, NF-kappaB transcription factor activity, and response to hypoxia. AP3M2 could predict chemotherapy effectiveness and prognosis for colon cancer patients. AP3M2 might inhibit tumor growth via influencing tumor-infiltrating immune cells in the context of Tumor microenvironment. AP3M2 plays as an oncogene in CRAC and is suggested as a new potential biotarget for therapy.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Colorectal Neoplasms , Humans , Colonic Neoplasms/genetics , Prognosis , Adaptor Protein Complex 3 , Oxaliplatin , Colorectal Neoplasms/genetics , Oligonucleotides , Tumor Microenvironment/genetics
7.
Phytochem Anal ; 35(4): 771-785, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38273442

ABSTRACT

INTRODUCTION: There are some problems in the quality control of Epimedii Folium (leaves of Epimedium brevicornum Maxim.), such as the mixed use of Epimedii Folium from different harvesting periods and regions, incomplete quality evaluation, and time-consuming analysis methods. OBJECTIVE: Near-infrared (NIR) spectroscopy was conducted to establish a rapid overall quality evaluation method for Epimedii Folium. MATERIALS AND METHODS: Quantitative models of the total solid, moisture, total flavonoid, and flavonol glycoside (Epimedin A, Epimedin B, Epimedin C, Icariin) contents of Epimedii Folium were established by partial least squares regression (PLSR). The root mean square error (RMSE) and correlation coefficient (R) were used to evaluate the performance of models. The qualitative models of Epimedii Folium from different geographic origins and harvest periods were established based on K-nearest neighbor (KNN), back-propagation neural network (BPNN), and random forest (RF). Accuracy and Kappa values were used to evaluate the performance of models. A new multivariable signal conversion strategy was proposed, which combines NIR spectroscopy with the PLSR model to predict the absorbance values of retention time points in the high-performance liquid chromatography (HPLC) fingerprint to obtain the predicted HPLC fingerprint. The Pearson correlation coefficient and cosine coefficient were used to evaluate the similarity between real and predicted HPLC fingerprints. RESULTS: Qualitative models, quantitative models, and the similarity between real and predicted HPLC fingerprints are satisfactory. CONCLUSION: The method serves as a fast and green analytical quality evaluation method of Epimedii Folium and can replace traditional methods to achieve the overall quality evaluation of Epimedii Folium.


Subject(s)
Chemometrics , Epimedium , Flavonoids , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Epimedium/chemistry , Flavonoids/analysis , Least-Squares Analysis , Chemometrics/methods , Plant Leaves/chemistry , Quality Control , Chromatography, High Pressure Liquid/methods
8.
Arch Toxicol ; 98(1): 277-288, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922104

ABSTRACT

Glyphosate is a widely used active ingredient in agricultural herbicides, inhibiting the biosynthesis of aromatic amino acids in plants by targeting their shikimate pathway. Our gut microbiota also facilitates the shikimate pathway, making it a vulnerable target when encountering glyphosate. Dysbiosis in the gut microbiota may impair the gut-brain axis, bringing neurological outcomes. To evaluate the neurotoxicity and biochemical changes attributed to glyphosate, we exposed mice with the reference dose (RfD) set by the U.S. EPA (1.75 mg/Kg-BW/day) and its hundred-time-equivalence (175 mg/Kg-BW/day) chronically via drinking water, then compared a series of neurobehaviors and their fecal/serum metabolomic profile against the non-exposed vehicles (n = 10/dosing group). There was little alteration in the neurobehavior, including motor activities, social approach, and conditioned fear, under glyphosate exposure. Metabolomic differences attributed to glyphosate were observed in the feces, corresponding to 68 and 29 identified metabolites with dysregulation in the higher and lower dose groups, respectively, compared to the vehicle-control. There were less alterations observed in the serum metabolome. Under 175 mg/Kg-BW/day of glyphosate exposure, the aromatic amino acids (phenylalanine, tryptophan, and tyrosine) were reduced in the feces but not in the serum of mice. We further focused on how tryptophan metabolism was dysregulated based on the pathway analysis, and identified the indole-derivatives were more altered compared to the serotonin and kynurenine derivatives. Together, we obtained a three-dimensional data set that records neurobehavioral, fecal metabolic, and serum biomolecular dynamics caused by glyphosate exposure at two different doses. Our data showed that even under the high dose of glyphosate irrelevant to human exposure, there were little evidence that supported the impairment of the gut-brain axis.


Subject(s)
Glyphosate , Herbicides , Humans , Mice , Animals , Glycine/toxicity , Tryptophan , Shikimic Acid/metabolism , Herbicides/toxicity , Amino Acids, Aromatic
9.
J Genet Genomics ; 51(4): 419-432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37923173

ABSTRACT

The cerebral cortex is a pivotal structure integral to advanced brain functions within the mammalian central nervous system. DNA methylation and hydroxymethylation play important roles in regulating cerebral cortex development. However, it remains unclear whether abnormal cerebral cortex development, such as microcephaly, could rescale the epigenetic landscape, potentially contributing to dysregulated gene expression during brain development. In this study, we characterize and compare the DNA methylome/hydroxymethylome and transcriptome profiles of the cerebral cortex across several developmental stages in wild-type (WT) mice and Mcph1 knockout (Mcph1-del) mice with severe microcephaly. Intriguingly, we discover a global reduction of 5'-hydroxymethylcytosine (5hmC) level, primarily in TET1-binding regions, in Mcph1-del mice compared to WT mice during juvenile and adult stages. Notably, genes exhibiting diminished 5hmC levels and concurrently decreased expression are essential for neurodevelopment and brain functions. Additionally, genes displaying a delayed accumulation of 5hmC in Mcph1-del mice are significantly associated with the establishment and maintenance of the nervous system during the adult stage. These findings reveal that aberrant cerebral cortex development in the early stages profoundly alters the epigenetic regulation program, which provides unique insights into the molecular mechanisms underpinning diseases related to cerebral cortex development.

10.
Phys Chem Chem Phys ; 25(42): 29303-29309, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37876211

ABSTRACT

Near-infrared (NIR) phosphors with high thermal stability are significant for NIR light-emitting diodes (LEDs). For a decade, Debye temperature has been a successful indicator of structural rigidity and thermal stability for phosphors, but some exceptions exist due to its dependence on atomic mass. Inspired by the Debye temperature model that relates the elastic properties of solids, our density functional theory calculations revealed that the Vickers hardness of Cr3+-doped NIR phosphors was negatively correlated with Stokes shifts (Pearson's R = -0.81) and positively correlated with thermal stabilities (Pearson's R = 0.85) within a set of 13 distinct material types. Highlighting the predictive power of Vickers hardness, two new NIR phosphors were investigated: KMg(PO3)3:Cr3+ showed low thermal stability, correlating with its lower Vickers hardness, in contrast to the high thermal stability and correspondingly higher Vickers hardness of La2MgSnO6:Cr3+. Vickers hardness can be used to screen potential hosts for Cr3+-doped NIR phosphors with high thermal stabilities, due to the advantages of the predictable feature by density functional theory calculation and low independence on atomic mass.

11.
Int J Immunopathol Pharmacol ; 37: 3946320231206966, 2023.
Article in English | MEDLINE | ID: mdl-37847172

ABSTRACT

Acetaldehyde dehydrogenases (ALDH) 1B1 is associated with a poor prognosis in pancreatic cancer, colorectal cancer, and osteosarcoma. Overexpression of ALDH also impairs tumor immunity. However, it is unclear how ALDH1B1 is associated with patient prognosis and immune infiltration in different cancer types. This is an original research based on bioinformatics analysis. In this study, we investigated the expression and prognostic value of ALDH1B1 in pan-cancer specimens using several databases, including GEPIA2 and Kaplan-Meier Plotter. The GEPIA2 and TIMER2 databases were used to explore correlations between ALDH1B1 expression and immune infiltration in cancers, especially head and neck squamous cell carcinoma (HNSC) and stomach adenocarcinoma (STAD). Finally, the expression of ALDH1B1 was validated by qPCR and immunohistochemistry. The expression of ALDH1B1 differed in most cancers compared to normal tissue controls. ALDH1B1 has an important impact on the prognosis different cancer types, and the high expression of ALDH1B1 is inversely associated with survival in patients with HNSC. A significant positive correlation was identified between ALDH1B1 expression in HNSC and immune infiltration. The poor prognosis associated with high expression of ALDH1B1 may be related to the promotion of M2 polarization of tumor-associated macrophages. Furthermore, markers of immune cell infiltration, such as exhausted T cells and regulatory T cells showed different patterns of ALDH1B1-associated immune infiltration. ALDH1B1 can serve as a prognostic biomarker in pan-cancer types and is correlated with immune infiltration.


Subject(s)
Bone Neoplasms , Pancreatic Neoplasms , Humans , Prognosis , Aldehyde Oxidoreductases/genetics
12.
Medicine (Baltimore) ; 102(34): e34859, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37653756

ABSTRACT

Psoriasis is an immune-mediated inflammatory skin disease with a complex etiology involving environmental and genetic factors. Psoriasis patients often require long-term treatment. Shanyaotianua decoction (STT), a typical traditional Chinese medicine prescription, positively affects psoriasis, although its molecular targets remain unknown. To elucidate its molecular mechanisms, a combination of network pharmacology, bioinformatics analysis, and drug similarity comparisons were employed. Participants were separated into 3 groups: non-lesional (NL), lesions after medication (LM), and psoriasis lesion groups (LS). Based on the Gene Ontology/kyoto encyclopedia of genes and genomes enrichment analyses, the key targets were mainly enriched for biological processes (immuno-inflammatory responses, leukocyte differentiation, lipid metabolic disorders, and viral infection) with the relevant pathways (Janus kinase/signal transducers and activators of transcription and adipocytokine signaling and T-helper 17 cell differentiation), thus identifying the possible action mechanism of STT against psoriasis. Target prediction for 18 STT compounds that matched the screening criteria was performed. Then, the STT compounds were intersected with the differentially expressed genes of the psoriatic process, and 5 proteins were potential targets for STT. Based on the open-source toolkit RDKit and DrugBank database, and through molecular docking and drug similarity comparisons, spinasterol, diosgenin, and 24-Methylcholest-5-enyl-3belta-O-glucopyranoside_qt may be potential drugs for psoriasis.


Subject(s)
Dermatitis , Psoriasis , Humans , Network Pharmacology , Molecular Docking Simulation , Psoriasis/drug therapy , Computational Biology
13.
Adv Colloid Interface Sci ; 320: 103009, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37776735

ABSTRACT

Although the pathogenesis of Alzheimer's disease (AD) is still unclear, abnormally high concentrations of metal ions, like copper, iron and zinc, were found in senile plaques of AD brain, which inspires extensive studies on the fundamental molecular interactions of metal ions with the pathogenic hallmarks, amyloid-ß (Aß) peptides and tau proteins, respectively forming senile plaques and neurofibrillary tangles (NFTs) in AD brains. Early works concern the concentration effect of the metal ions on Aß and tau aggregation. Yet, it is obvious that the surrounding environment of the metal ions must also be considered, not just the metal ions as free accessible forms in the solution phase. The most important surrounding environment in vivo is a very large surface area from cell membranes and other macromolecular surfaces. These bio-interfaces make the kinetic pathways of metal ion mediated Aß and tau aggregation radically different from those in the solution phase. To better understand the role of metal ions in AD peptide and protein aggregation, we summarize and discuss the recent achievements in the research of metal ion mediated Aß and tau aggregation, particularly the corresponding mechanism differences between the solution phase and the surface environment. The metal ion chelation therapy for AD is also discussed from the point of the surface pool of metal ions.

14.
Dalton Trans ; 52(40): 14423-14427, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37768002

ABSTRACT

The luminescence efficiency and thermal stability are enduring topics in the realm of phosphors. It is acknowledged that the structural transformation from disorder to order results in increased lattice rigidity, consequently inducing heightened efficiency and enhanced thermal stability. In this case study of the structural evolution of Ca3Ga2Ge4O14:Cr3+, NaCa2GaGe5O14:Cr3+ and Na2CaGe6O14:Cr3+ near-infrared (NIR) phosphors, a significant paradox is revealed: the incongruent relationship between the fluctuating degrees of disorder and the simultaneous improvements in efficiency and thermal stability. By drawing on insights gained from structural analysis, optical investigations, and theoretical calculations, a notable revelation surfaces: the primary factor affecting rigidity and optical performance is not the disordering of the entire lattice, but rather the disordering of the framework itself. The findings elucidate the principle of framework-order engineering for crafting high-performance NIR phosphors.

15.
Int J Colorectal Dis ; 38(1): 192, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37432563

ABSTRACT

BACKGROUND: As the incidence of colorectal cancer tends to be younger, early-onset colorectal cancer (EOCRC) has attracted more attention in recent years. We aimed to assess the optimal lymph node staging system among EOCRC patients, and then, establish informative assessment models for prognosis prediction. METHODS: Data of EOCRC were retrieved from the Surveillance, Epidemiology, and End Results database. Survival prediction ability of three lymph node staging systems including N stage of the tumor node metastasis (TNM) staging system, lymph node ratio (LNR), and log odds of positive lymph nodes (LODDS) was assessed and compared using Akaike information criterion (AIC), Harrell's concordance index (C-index), and likelihood ratio (LR) test. Univariate and multivariate Cox regression analyses were conducted to identify the prognostic predictors for overall survival (OS) and cancer-specific survival (CSS). Effectiveness of the model was demonstrated by receiver operative curve and decision curve analysis. RESULTS: A total of 17,535 cases were finally included in this study. All three lymph node staging systems showed significant performance in survival prediction (p < 0.001). Comparatively, LODDS presented a better ability of prognosis prediction with lower AIC (OS: 70,510.99; CSS: 60,925.34), higher C-index (OS: 0.6617; CSS: 0.6799), and higher LR test score (OS: 998.65; CSS: 1103.09). Based on independent factors identified from Cox regression analysis, OS and CSS nomograms for EOCRC were established and validated. CONCLUSIONS: LODDS shows better predictive performance than N stage or LNR among patients with EOCRC. Novel validated nomograms based on LODDS could effectively provide more prognostic information than the TNM staging system.


Subject(s)
Colorectal Neoplasms , Neoplasms, Second Primary , Humans , Prognosis , Nomograms , Lymph Nodes
16.
Obesity (Silver Spring) ; 31(6): 1514-1529, 2023 06.
Article in English | MEDLINE | ID: mdl-37203329

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the efficacy and safety of modified fasting therapy, and a retrospective study was conducted to analyze changes in clinical indicators of hospitalized fasting patients. METHODS: A total of 2054 hospitalized fasting patients were enrolled in this observational study. All participants underwent 7 days of modified fasting therapy. The clinical efficacy biomarkers, safety indicators, and body composition were measured before and after fasting. RESULTS: The modified fasting therapy reduced body weight, BMI, abdominal circumference, systolic blood pressure, and diastolic blood pressure significantly. Blood glucose and indicators of body composition were improved to various extents (all p < 0.05). There was a small increase in liver function, kidney function, uric acid, electrolytes, blood count, coagulation, and uric biomarkers. Subgroup analysis results showed that cardiovascular diseases benefited from modified fasting therapy. CONCLUSIONS: At present this study is the largest retrospective population-based study about modified fasting therapy. The results from 2054 patients showed that the modified fasting therapy lasting 7 days was efficient and safe. It led to improvements in physical health and body weight-associated indicators, as well as body composition and relevant cardiovascular risk factors.


Subject(s)
Fasting , Weight Loss , Humans , Retrospective Studies , Body Weight , Blood Pressure , Blood Glucose , Biomarkers , Body Mass Index
17.
iScience ; 26(2): 105974, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36756367

ABSTRACT

Aberrant minichromosome maintenance (MCM) expression is associated with tumorigenesis. Here, we performed immunohistochemistry integrated with digital pathology to identify MCM2/5/6 expression in 130 neuroblastoma patients. A risk score was established using least absolute shrinkage and selection operator that predicts outcomes according to MCM2 expression, age, and the International Neuroblastoma Staging System in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset (n = 150), where the patients with high risk had significantly worse prognosis that was validated in a hospital-based cohort (n = 130). After multivariable adjustment, the risk model remained an independent factor for survival in the TARGET cohort (overall survival [OS]: hazard ratio [HR] 2.3, 95% confidence interval [CI] 1.4-4.0; event-free survival [EFS]: HR 1.8, 95% CI 1.1-3.1) and for OS in the validation cohort (HR 8.3, 95% CI 1.6-44.5). The ESTIMATE indicates that the risk model is negatively correlated with low ESTIMATE and stromal scores. These findings show the additive nature of this score, fostering its future implementation with new prognostic variables.

18.
J Diabetes Res ; 2022: 2736504, 2022.
Article in English | MEDLINE | ID: mdl-36248223

ABSTRACT

The main pathophysiological abnormalities in type 2 diabetes (T2D) include pancreatic ß-cell dysfunction and insulin resistance. Due to hyperglycemia, patients receive long-term treatment. However, side effects and drug tolerance usually lead to treatment failure. GuaLouQuMaiWan (GLQMW), a common traditional Chinese medicine (TCM) prescription, has positive effects on controlling blood sugar and improving quality of life, but the mechanism is still unclear. To decipher their molecular mechanisms, we used a novel computational systems pharmacology-based approach consisting of bioinformatics analysis, network pharmacology, and drug similarity comparison. We divided the participants into nondisease (ND), impaired glucose tolerance (IGT), and type 2 diabetes groups according to the WHO's recommendations for diabetes. By analyzing the gene expression profile of the ND-IGT-T2D (ND to IGT to T2D) process, we found that the function of downregulated genes in the whole process was mainly related to insulin secretion, while the upregulated genes were related to inflammation. Furthermore, other genes in the ND-IGT (ND to IGT) process are mainly related to inflammation and lipid metabolic disorders. We speculate that 17 genes with a consistent trend may play a key role in the process of ND-IGT-T2D. We further performed target prediction for 50 compounds in GLQMW that met the screening criteria and intersected the differentially expressed genes of the T2D process with the compounds of GLQMW; a total of 18 proteins proved potential targets for GLQMW. Among these, RBP4 is considerably related to insulin resistance. GO/KEGG enrichment analyses of the target genes of GLQMW showed enrichment in inflammation- and T2D therapy-related pathways. Based on the RDKit tool and the DrugBank database, we speculate that (-)-taxifolin, dialoside A_qt, spinasterol, isofucosterol, and 11,14-eicosadienoic acid can be used as potential drugs for T2D via molecular docking and drug similarity comparison.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Insulin Resistance , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Humans , Inflammation , Insulin Resistance/genetics , Lipids , Molecular Docking Simulation , Network Pharmacology , Quality of Life , Retinol-Binding Proteins, Plasma/metabolism , Transcriptome
19.
ACS Chem Neurosci ; 13(21): 3057-3067, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36245095

ABSTRACT

Vascular dementia (VaD), one of the major consequences after stroke, is the second reason for the cognitive decline in aged people. Chronic cerebral hypoperfusion (CCH) is considered as the main cause for cognitive impairment in VaD patients. In our previous study, a synthetic compound, 4-trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine acid (AE-18), has been proven to decrease infarct volume and to recover the insufficient blood supply after ischemia-reperfusion in rats, which was reminded that AE-18 may possess the ameliorative effect in CCH. In this study, the bilateral common carotid artery occlusion was performed to establish the CCH model in rats to evaluate the effect and mechanisms of AE-18 in CCH. Results showed that AE-18 (5 and 10 mg/kg, i.g.) could recover the learning and memory and increase the number of neurons in the hippocampus, which may be attributed to its neurogenesis effects and its recovery of cerebral blood flow in CCH rats. In addition, the in vitro studies showed that AE-18 promoted neuronal proliferation, induced differentiation of Neuro-2a cells into a neuron-like morphology, and accelerated the establishment of axon-dendrite polarization of primary hippocampal neurons through upregulating brain-derived neurotrophic factor via the PI3K/Akt/CREB pathway. In conclusion, AE-18 is a promising candidate for the treatment of cognitive decline after CCH injury by restoring blood supply to the brain and promoting neurogenesis in the hippocampus.


Subject(s)
Brain Ischemia , Dementia, Vascular , Animals , Rats , Brain-Derived Neurotrophic Factor/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phenylalanine/metabolism , Neurogenesis , Brain Ischemia/metabolism , Hippocampus/metabolism , Maze Learning , Disease Models, Animal
20.
Front Oncol ; 12: 1024345, 2022.
Article in English | MEDLINE | ID: mdl-36313637

ABSTRACT

Background: Controversy persists about neoadjuvant chemotherapy (NAC) within the field of locally advanced colon cancer (LACC). The purpose of this study was to assess the existing and latest literature with high quality to determine the role of NAC in various aspects. Methods: A comprehensive literature search of the PubMed, Embase, Web of Science, and the Cochrane Library databases was conducted from inception to April 2022. Review Manager 5.3 was applied for meta-analyses with a random-effects model whenever possible. Results: Overall, 8 studies were included in this systematic review and meta-analysis, comprising 4 randomized controlled trials (RCTs) and 4 retrospective studies involving 40,136 participants. The 3-year overall survival (OS) (HR: 0.90, 95% CI: 0.66-1.23, P = 0.51) and 5-year OS (HR: 0.89, 95% CI: 0.53-1.03, P = 0.53) were comparable between two groups. Mortality in 30 days was found less frequent in the NAC group (OR: 0.43, 95% CI: 0.20-0.91, P = 0.03), whereas no significant differences were detected concerning other perioperative complications, R0 resection, or adverse events. In terms of subgroup analyses for RCTs, less anastomotic leak (OR: 0.51, 95% CI: 0.31-0.86, P = 0.01) and higher R0 resection rate (OR: 2.35, 95% CI: 1.04-5.32, P = 0.04) were observed in the NAC group. Conclusions: NAC is safe and feasible for patients with LACC, but no significant survival benefit could be demonstrated. The application of NAC still needs to be prudent until significant evidence supporting the oncological outcomes is presented. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier (CRD42022333306).

SELECTION OF CITATIONS
SEARCH DETAIL
...