Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Int J Biol Sci ; 20(9): 3557-3569, 2024.
Article in English | MEDLINE | ID: mdl-38993575

ABSTRACT

To investigate the cell linkage between tooth dentin and bones, we studied TGF-ß roles during postnatal dentin development using TGF-ß receptor 2 (Tgfßr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfßr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfßr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-ß signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.


Subject(s)
Dentin , Odontoblasts , Receptors, Transforming Growth Factor beta , Signal Transduction , Transforming Growth Factor beta , Dentin/metabolism , Transforming Growth Factor beta/metabolism , Animals , Odontoblasts/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Mice , Tooth/metabolism , Bone and Bones/metabolism , X-Ray Microtomography , Receptor, Transforming Growth Factor-beta Type II/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice, Knockout
2.
Cell Res ; 34(2): 124-139, 2024 02.
Article in English | MEDLINE | ID: mdl-38168640

ABSTRACT

Achieving uniform optical resolution for a large tissue sample is a major challenge for deep imaging. For conventional tissue clearing methods, loss of resolution and quality in deep regions is inevitable due to limited transparency. Here we describe the Transparent Embedding Solvent System (TESOS) method, which combines tissue clearing, transparent embedding, sectioning and block-face imaging. We used TESOS to acquire volumetric images of uniform resolution for an adult mouse whole-body sample. The TESOS method is highly versatile and can be combined with different microscopy systems to achieve uniformly high resolution. With a light sheet microscope, we imaged the whole body of an adult mouse, including skin, at a uniform 0.8 × 0.8 × 3.5 µm3 voxel resolution within 120 h. With a confocal microscope and a 40×/1.3 numerical aperture objective, we achieved a uniform sub-micron resolution in the whole sample to reveal a complete projection of individual nerve axons within the central or peripheral nervous system. Furthermore, TESOS allowed the first mesoscale connectome mapping of individual sensory neuron axons spanning 5 cm from adult mouse digits to the spinal cord at a uniform sub-micron resolution.


Subject(s)
Axons , Imaging, Three-Dimensional , Mice , Animals , Solvents , Imaging, Three-Dimensional/methods , Spinal Cord , Peripheral Nervous System
3.
JCI Insight ; 8(24)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37943605

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Osteomalacia , Animals , Mice , Calcification, Physiologic/genetics , Extracellular Matrix Proteins/metabolism , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factors , Hypophosphatemia/genetics , Mice, Knockout , Minerals/metabolism , Osteomalacia/genetics , Osteomalacia/metabolism
4.
FEBS J ; 290(16): 4074-4091, 2023 08.
Article in English | MEDLINE | ID: mdl-37042280

ABSTRACT

Osteocytes are the terminally differentiated bone cells resulted from bone formation. Although there are two distinct processes of bone formation, intramembranous and endochondral ossifications contributing to the formation of calvarial and long bones, it is not clear whether the distinct pathways determine the differences between calvaria and femoral cortical bone derived osteocytes. In the present study, we employed confocal structured illumination microscopy and mRNA-sequencing analysis to characterize the morphologic and transcriptomic expression of osteocytes from murine calvaria and mid-shaft femoral cortical bone. Structured illumination microscopy and geometric modelling showed round shaped and irregularly scattered calvarial osteocytes compared to spindle shaped and orderly arrayed cortical osteocytes. mRNA-sequencing analysis indicated different transcriptomic profiles between calvarial and cortical osteocytes and provided evidence that mechanical response of osteocytes may contribute to geometrical differences. Furthermore, transcriptomic analysis showed that these two groups of osteocytes come from distinct pathways with 121 ossification-related genes differentially expressed. Analysis of correlation between ossification and osteocyte geometries via a Venn diagram showed that several genes related to ossification, cytoskeleton organization and dendrite development were differentially expressed between calvarial and cortical osteocytes. Finally, we demonstrated that aging disrupted the organization of dendrites and cortical osteocytes but had no significant effects on calvarial osteocytes. Together, we conclude that calvarial and cortical osteocytes are different in various aspects, which is probably the consequence of their distinct pathways of ossification.


Subject(s)
Osteocytes , Skull , Animals , Mice , Osteocytes/metabolism , Gene Expression , RNA, Messenger/metabolism , Aging/genetics
5.
Int J Biol Sci ; 19(1): 183-203, 2023.
Article in English | MEDLINE | ID: mdl-36594083

ABSTRACT

Large joints are composed of two closely linked cartilages: articular cartilage (AC; rich in type II collagen, a well-studied tissue) and fibrocartilaginous enthesis (FE; rich in type I collagen, common disorder sites of enthesopathy and sporting injuries, although receiving little attention). For many years, both cartilages were thought to be formed by chondrocytes, whereas tendon, which attaches to the humeral bone head, is primarily considered as a completely different connective tissue. In this study, we raised an unconventional hypothesis: tendon cells directly form FE via cell transdifferentiation. To test this hypothesis, we first qualitatively and quantitatively demonstrated distinct differences between AC and FE in cell morphology and cell distribution, mineralization status, extracellular matrix (ECM) contents, and critical ECM protein expression profiles using comprehensive approaches. Next, we traced the cell fate of tendon cells using ScxLin (a tendon specific Cre ScxCreERT2; R26R-tdTomato line) with one-time tamoxifen induction at early (P3) or young adult (P28) stages and harvested mice at different development ages, respectively. Our early tracing data revealed different growth events in tendon and FE: an initial increase but gradual decrease in the ScxLin tendon cells and a continuous expansion in the ScxLin FE cells. The young adult tracing data demonstrated continuous recruitment of ScxLin cells into FE expansion during P28 and P56. A separate tracing line, 3.2 Col 1Lin (a so-called "bone-specific" line), further confirmed the direct contribution of tendon cells for FE cell formation, which occurred in days but FE ECM maturation (including high levels of SOST, a potent Wnt signaling inhibitor) took weeks. Finally, loss of function data using diphtheria toxin fragment A (DTA) in ScxLin cells demonstrated a significant reduction of ScxLin cells in both tendons and FE cells, whereas the gain of function study (by stabilizing ß-catenin in ScxLin tendon cells via one-time injection of tamoxifen at P3 and harvesting at P60) displayed great expansion of both ScxLin tendon and FE mass. Together, our studies demonstrated that fibrocartilage is an invaded enthesis likely originating from the tendon via a quick cell transdifferentiation mechanism with a lengthy ECM maturation process. The postnatally formed fibrocartilage roots into existing cartilage and firmly connects tendon and bone instead of acting as a simple attachment site as widely believed. We believe that this study will stimulate more intense exploring in this understudied area, especially for patients with enthesopathy and sporting injuries.


Subject(s)
Enthesopathy , Mice , Animals , Enthesopathy/metabolism , Tendons/metabolism , Fibrocartilage , Humerus , Tamoxifen
6.
Matrix Biol ; 111: 245-263, 2022 08.
Article in English | MEDLINE | ID: mdl-35820561

ABSTRACT

Amelogenesis imperfecta (AI) is an inherited developmental enamel defect affecting tooth masticatory function, esthetic appearance, and the well-being of patients. As one of the major enamel matrix proteins (EMPs), enamelin (ENAM) has three serines located in Ser-x-Glu (S-x-E) motifs, which are potential phosphorylation sites for the Golgi casein kinase FAM20C. Defects in FAM20C have similarly been associated with AI. In our previous study of EnamRgsc514 mice, the Glu57 in the S55-X56-E57 motif was mutated into Gly, which was expected to cause a phosphorylation failure of Ser55 because Ser55 cannot be recognized by FAM20C. The severe enamel defects in ENAMRgsc514 mice reminiscent of Enam-knockout mouse enamel suggested a potentially important role of Ser55 phosphorylation in ENAM function. However, the enamel defects and ENAM dysfunction may also be attributed to distinct physicochemical differences between Glu57 and Gly57. To clarify the significance of Ser55 phosphorylation to ENAM function, we generated two lines of Enam knock-in mice using CRISPR-Cas9 method to eliminate or mimic the phosphorylation state of Ser55 by substituting it with Ala55 or Asp55 (designated as S55A or S55D), respectively. The teeth of 6-day or 4-week-old mice were subjected to histology, micro-CT, SEM, TEM, immunohistochemistry, and mass spectrometry analyses to characterize the morphological, microstructural and proteomic changes in ameloblasts, enamel matrix and enamel rods. Our results showed that the enamel formation and EMP expression in S55D heterozygotes (Het) were less disturbed than those in S55A heterozygotes, while both homozygotes (Homo) had no mature enamel formation. Proteomic analysis revealed alterations of enamel matrix biosynthetic and mineralization processes in S55A Hets. Our present findings indicate that Asp55 substitution partially mimics the phosphorylation state of Ser55 in ENAM. Ser55 phosphorylation is essential for ENAM function during amelogenesis.


Subject(s)
Amelogenesis Imperfecta , Dental Enamel Proteins , Amelogenesis/genetics , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Animals , Calcium-Binding Proteins/metabolism , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Mice , Mice, Knockout , Phosphorylation , Proteomics , Serine/metabolism
7.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35682655

ABSTRACT

The vertebrate musculoskeletal system is known to be formed by mesenchymal stem cells condensing into tissue elements, which then differentiate into cartilage, bone, tendon/ligament, and muscle cells. These lineage-committed cells mature into end-stage differentiated cells, like hypertrophic chondrocytes and osteocytes, which are expected to expire and to be replaced by newly differentiated cells arising from the same lineage pathway. However, there is emerging evidence of the role of cell transdifferentiation in bone development and disease. Although the concept of cell transdifferentiation is not new, a breakthrough in cell lineage tracing allowed scientists to trace cell fates in vivo. Using this powerful tool, new theories have been established: (1) hypertrophic chondrocytes can transdifferentiate into bone cells during endochondral bone formation, fracture repair, and some bone diseases, and (2) tendon cells, beyond their conventional role in joint movement, directly participate in normal bone and cartilage formation, and ectopic ossification. The goal of this review is to obtain a better understanding of the key roles of cell transdifferentiation in skeletal development and diseases. We will first review the transdifferentiation of chondrocytes to bone cells during endochondral bone formation. Specifically, we will include the history of the debate on the fate of chondrocytes during bone formation, the key findings obtained in recent years on the critical factors and molecules that regulate this cell fate change, and the role of chondrocyte transdifferentiation in skeletal trauma and diseases. In addition, we will also summarize the latest discoveries on the novel roles of tendon cells and adipocytes on skeletal formation and diseases.


Subject(s)
Cell Transdifferentiation , Osteogenesis , Cartilage/metabolism , Cell Differentiation/physiology , Chondrocytes/metabolism , Chondrogenesis/physiology , Osteogenesis/physiology
8.
Elife ; 112022 06 27.
Article in English | MEDLINE | ID: mdl-35758636

ABSTRACT

Increased intracellular iron spurs mitochondrial biogenesis and respiration to satisfy high-energy demand during osteoclast differentiation and bone-resorbing activities. Transferrin receptor 1 (Tfr1) mediates cellular iron uptake through endocytosis of iron-loaded transferrin, and its expression increases during osteoclast differentiation. Nonetheless, the precise functions of Tfr1 and Tfr1-mediated iron uptake in osteoclast biology and skeletal homeostasis remain incompletely understood. To investigate the role of Tfr1 in osteoclast lineage cells in vivo and in vitro, we crossed Tfrc (encoding Tfr1)-floxed mice with Lyz2 (LysM)-Cre and Cathepsin K (Ctsk)-Cre mice to generate Tfrc conditional knockout mice in myeloid osteoclast precursors (Tfr1ΔLysM) or differentiated osteoclasts (Tfr1ΔCtsk), respectively. Skeletal phenotyping by µCT and histology unveiled a significant increase in trabecular bone mass with normal osteoclast number in long bones of 10-week-old young and 6-month-old adult female but not male Tfr1ΔLysM mice. Although high trabecular bone volume in long bones was observed in both male and female Tfr1ΔCtsk mice, this phenotype was more pronounced in female knockout mice. Consistent with this gender-dependent phenomena, estrogen deficiency induced by ovariectomy decreased trabecular bone mass in Tfr1ΔLysM mice. Mechanistically, disruption of Tfr1 expression attenuated mitochondrial metabolism and cytoskeletal organization in mature osteoclasts in vitro by attenuating mitochondrial respiration and activation of the Src-Rac1-WAVE regulatory complex axis, respectively, leading to decreased bone resorption with little impact on osteoclast differentiation. These results indicate that Tfr1-mediated iron uptake is specifically required for osteoclast function and is indispensable for bone remodeling in a gender-dependent manner.


Subject(s)
Bone Resorption , Iron , Osteoclasts , Receptors, Transferrin , Animals , Bone Resorption/pathology , Cytoskeleton/metabolism , Female , Iron/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Osteoclasts/metabolism , Receptors, Transferrin/genetics
9.
J Clin Periodontol ; 49(9): 945-956, 2022 09.
Article in English | MEDLINE | ID: mdl-35634660

ABSTRACT

AIM: To date, controversies still exist regarding the exact cellular origin and regulatory mechanisms of periodontium development, which hinders efforts to achieve ideal periodontal tissue regeneration. Axin2-expressing cells in the periodontal ligament (PDL) have been shown to be a novel progenitor cell population that is essential for periodontal homeostasis. In the current study, we aimed to elucidate the regulatory role of bone morphogenetic protein receptor type 1A (BMPR1A)-mediated BMP signalling in Axin2-expressing cells during periodontium development. MATERIALS AND METHODS: Two strains of Axin2 gene reporter mice, Axin2lacZ/+ and Axin2CreERT2/+ ; R26RtdTomato/+ mice, were used. We next generated Axin2CreERT2/+ ; R26RDTA/+ ; R26RtdTomato/+ mice to genetically ablate of Axin2-lineage cells. Axin2CreERT2/+ ; Bmpr1afl/fl ; R26RtdTomato/+ mice were established to conditionally knock out Bmpr1a in Axin2-lineage cells. Multiple approaches, including micro-computed tomography, calcein green, and alizarin red double-labelling, scanning electron microscopy, and histological and immunostaining assays, were used to analyse periodontal phenotypes and molecular mechanisms. RESULTS: X-gal staining revealed that Axin2-expressing cells in the PDL were mainly distributed along the alveolar bone and cementum surface. Cell lineage tracing and cell ablation assays further demonstrated the indispensable role of Axin2-expressing cells in periodontium development. Next, we found that conditional knockout of Bmpr1a in Axin2-lineage cells led to periodontal defects, which were characterized by alveolar bone loss, impaired cementogenesis, and abnormal Sharpey's fibres. CONCLUSIONS: Our findings suggest that Axin2-expressing cells in the PDL are essential for periodontium development, which is regulated by BMP signalling.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I/metabolism , Periodontal Ligament , Animals , Axin Protein/genetics , Bone Morphogenetic Proteins , Cementogenesis , Dental Cementum , Mice , Periodontal Ligament/growth & development , Periodontal Ligament/metabolism , Periodontium , Signal Transduction , X-Ray Microtomography
10.
J Bone Miner Res ; 37(7): 1307-1320, 2022 07.
Article in English | MEDLINE | ID: mdl-35443291

ABSTRACT

Normal development of craniofacial sutures is crucial for cranial and facial growth in all three dimensions. These sutures provide a unique niche for suture stem cells (SuSCs), which are indispensable for homeostasis, damage repair, as well as stress balance. Expansion appliances are now routinely used to treat underdevelopment of the skull and maxilla, stimulating the craniofacial sutures through distraction osteogenesis. However, various treatment challenges exist due to a lack of full understanding of the mechanism through which mechanical forces stimulate suture and bone remodeling. To address this issue, we first identified crucial steps in the cycle of suture and bone remodeling based on the established standard suture expansion model. Observed spatiotemporal morphological changes revealed that the remodeling cycle is approximately 3 to 4 weeks, with collagen restoration proceeding more rapidly. Next, we traced the fate of the Gli1+ SuSCs lineage upon application of tensile force in three dimensions. SuSCs were rapidly activated and greatly contributed to bone remodeling within 1 month. Furthermore, we confirmed the presence of Wnt activity within Gli1+ SuSCs based on the high co-expression ratio of Gli1+ cells and Axin2+ cells, which also indicated the homogeneity and heterogeneity of two cell groups. Because Wnt signaling in the sutures is highly upregulated upon tensile force loading, conditional knockout of ß-catenin largely restricted the activation of Gli1+ SuSCs and suppressed bone remodeling under physiological and expansion conditions. Thus, we concluded that Gli1+ SuSCs play essential roles in suture and bone remodeling stimulated by mechanical force and that Wnt signaling is crucial to this process. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Cranial Sutures , Maxilla , Stem Cells , Sutures , Zinc Finger Protein GLI1
11.
Article in English | MEDLINE | ID: mdl-35165067

ABSTRACT

OBJECTIVE: Adenomatoid odontogenic tumor (AOT) was classified by the World Health Organization as a mixed odontogenic tumor in 1992 and reclassified without a clear rationale as an epithelium-only tumor in 2005. The purpose of this study was to investigate if there was any evidence to suggest AOT might be a mixed odontogenic tumor. STUDY DESIGN: Immunohistochemical studies with nestin, dentin sialophosphoprotein (DSPP), cytokeratin, and vimentin were performed using 21 cases of AOT, and the staining results were analyzed according to the various morphologic patterns seen in AOT. Sirius red stain was used to detect the presence of collagen types I and III in AOT products. RESULTS: Our results showed that 20 of 21 (95.23%), 0 of 21 (0%), 21 of 21 (100%), and 20 of 21 (95.23%) cases expressed nestin, DSPP, cytokeratin, and vimentin, respectively. Some cells in rosette/duct-like structures (RDSs) expressed nestin, vimentin, or both, without cytokeratin. Coexpression of vimentin and cytokeratin or of nestin, cytokeratin, and vimentin was noted in some cells. Sirius red staining was positive in eosinophilic products in RDSs, double-layered spheres, and dentinoids. CONCLUSION: Although most AOT cells appear epithelial, there is a small population of cells expressing mesenchymal proteins and secreting collagen types I and III. This evidence suggests that AOT is a mixed odontogenic tumor.


Subject(s)
Odontogenic Tumors , Ameloblastoma , Collagen , Humans , Keratins , Nestin , Odontogenic Tumors/pathology , Vimentin
12.
Oral Dis ; 28(2): 442-451, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33314501

ABSTRACT

OBJECTIVES: In this study, we attempted to define the precise window of time for molar root elongation using a gain-of-function mutation of ß-catenin model. MATERIALS AND METHODS: Both the control and constitutively activated ß-catenin (CA-ß-cat) mice received a one-time tamoxifen administration (for activation of ß-catenin at newborn, postnatal day 3, or 5, or 7, or 9) and were harvested at the same stage of P21. Multiple approaches were used to define the window of time of postnatal tooth root formation. RESULTS: In the early activation groups (tamoxifen induction at newborn, or P3 or P5), there was a lack of molar root elongation in the CA-ß-cat mice. When induced at P7, the root length was slightly reduced at P21. However, the root length was essentially the same as that in the control when ß-cat activated at P9. This study indicates that root elongation occurs in a narrow time of window, which is highly sensitive to a change of ß-catenin levels. Molecular studies showed a drastic decrease in the levels of nuclear factor I-C (NFIC) and osterix (OSX), plus sharp reductions of odontoblast differentiation markers, including Nestin, dentin sialoprotein (DSP), and dentin matrix protein 1 (DMP1) at both mRNA and protein levels. CONCLUSIONS: Murine molar root elongation is precisely regulated by the Wnt/ß-catenin signaling within a narrow window of time (newborn to day 5).


Subject(s)
Odontoblasts , Tooth Root , Wnt Signaling Pathway , beta Catenin , Animals , Cell Differentiation , Mice , Odontoblasts/physiology , Tooth Root/growth & development , beta Catenin/genetics , beta Catenin/metabolism
13.
Front Physiol ; 12: 721775, 2021.
Article in English | MEDLINE | ID: mdl-34630143

ABSTRACT

Transforming growth factor beta (TGFß) signaling plays an important role during osteogenesis. However, most research in this area focuses on cortical and trabecular bone, whereas alveolar bone is largely overlooked. To address the role of TGFßR2 (the key receptor for TGFß signaling) during postnatal alveolar bone development, we conditionally deleted Tgfßr2 in early mesenchymal progenitors by crossing Gli1-Cre ERT2; Tgfßr2 flox/flox ; R26R tdTomato mice (named early cKO) or in osteoblasts by crossing 3.2kb Col1-Cre ERT2 ; Tgfßr2 flox/flox ; R26R tdTomato mice (named late cKO). Both cKO lines were induced at postnatal day 5 (P5) and mice were harvested at P28. Compared to the control littermates, early cKO mice exhibited significant reduction in alveolar bone mass and bone mineral density, with drastic defects in the periodontal ligament (PDL); conversely, the late cKO mice displayed very minor changes in alveolar bone. Mechanism studies showed a significant reduction in PCNA+ PDL cell numbers and OSX+ alveolar bone cell numbers, as well as disorganized PDL fibers with a great reduction in periostin (the most abundant extracellular matrix protein) on both mRNA and protein levels. We also showed a drastic reduction in ß-catenin in the early cKO PDL and a great increase in SOST (a potent inhibitor of Wnt signaling). Based on these findings, we conclude that TGFß signaling plays critical roles during early alveolar bone formation via the promotion of PDL mesenchymal progenitor proliferation and differentiation mechanisms.

14.
Int J Biol Sci ; 17(10): 2430-2448, 2021.
Article in English | MEDLINE | ID: mdl-34326685

ABSTRACT

Bone-forming osteoblasts have been a cornerstone of bone biology for more than a century. Most research toward bone biology and bone diseases center on osteoblasts. Overlooked are the 90% of bone cells, called osteocytes. This study aims to test the hypothesis that osteocytes but not osteoblasts directly build mineralized bone structures, and that defects in osteocytes lead to the onset of hypophosphatemia rickets. The hypothesis was tested by developing and modifying multiple imaging techniques, including both in vivo and in vitro models plus two types of hypophosphatemia rickets models (Dmp1-null and Hyp, Phex mutation mice), and Dmp1-Cre induced high level of ß-catenin models. Our key findings were that osteocytes (not osteoblasts) build bone similar to the construction of a high-rise building, with a wire mesh frame (i.e., osteocyte dendrites) and cement (mineral matrices secreted from osteocytes), which is a lengthy and slow process whose mineralization direction is from the inside toward the outside. When osteoblasts fail to differentiate into osteocytes but remain highly active in Dmp-1-null or Hyp mice, aberrant and poor bone mineralization occurs, caused by a sharp increase in Wnt-ß-catenin signaling. Further, the constitutive expression of ß-catenin in osteocytes recaptures a similar osteomalacia phenotype as shown in Dmp1 null or Hyp mice. Thus, we conclude that osteocytes directly build bone, and osteoblasts with a short life span serve as a precursor to osteocytes, which challenges the existing dogma.


Subject(s)
Calcification, Physiologic/physiology , Familial Hypophosphatemic Rickets/metabolism , Osteoblasts/metabolism , Osteocytes/metabolism , beta Catenin/metabolism , Age Factors , Animals , Bone Density , Bone and Bones/metabolism , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Familial Hypophosphatemic Rickets/blood , Familial Hypophosphatemic Rickets/pathology , Femur/transplantation , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteocytes/ultrastructure , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Tibia/transplantation , Wnt Signaling Pathway
15.
J Bone Miner Res ; 36(8): 1548-1565, 2021 08.
Article in English | MEDLINE | ID: mdl-33905568

ABSTRACT

Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Diseases/genetics , Germ Cells , Mutagenesis , Animals , Ethylnitrosourea , Humans , Mice , Mutation , Phenotype , Phosphotransferases (Alcohol Group Acceptor)/genetics
16.
J Cell Physiol ; 236(9): 6077-6089, 2021 09.
Article in English | MEDLINE | ID: mdl-33533019

ABSTRACT

The hedgehog (Hh) signaling pathway plays an essential role in both tissue development and homeostasis. Glioma-associated oncogene homolog 1 (Gli1) is one of the vital transcriptional factors as well as the direct target gene in the Hh signaling pathway. The cells expressing the Gli1 gene (Gli1+ cells) have been identified as mesenchymal stem cells (MSCs) that are responsible for various tissue developments, homeostasis, and injury repair. This review outlines some recent discoveries on the crucial roles of Gli1+ MSCs in the development and homeostasis of varieties of hard and soft tissues.


Subject(s)
Homeostasis , Mesenchymal Stem Cells/metabolism , Organogenesis , Zinc Finger Protein GLI1/metabolism , Animals , Hedgehog Proteins/metabolism , Humans , Signal Transduction
17.
Bone Res ; 9(1): 6, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33500396

ABSTRACT

The maturation and function of osteoblasts (OBs) rely heavily on the reversible phosphorylation of signaling proteins. To date, most of the work in OBs has focused on phosphorylation by tyrosyl kinases, but little has been revealed about dephosphorylation by protein tyrosine phosphatases (PTPases). SHP2 (encoded by PTPN11) is a ubiquitously expressed PTPase. PTPN11 mutations are associated with both bone and cartilage manifestations in patients with Noonan syndrome (NS) and metachondromatosis (MC), although the underlying mechanisms remain elusive. Here, we report that SHP2 deletion in bone gamma-carboxyglutamate protein-expressing (Bglap+) bone cells leads to massive osteopenia in both trabecular and cortical bones due to the failure of bone cell maturation and enhanced osteoclast activity, and its deletion in Bglap+ chondrocytes results in the onset of enchondroma and osteochondroma in aged mice with increased tubular bone length. Mechanistically, SHP2 was found to be required for osteoblastic differentiation by promoting RUNX2/OSTERIX signaling and for the suppression of osteoclastogenesis by inhibiting STAT3-mediated RANKL production by osteoblasts and osteocytes. These findings are likely to explain the compromised skeletal system in NS and MC patients and to inform the development of novel therapeutics to combat skeletal disorders.

18.
Bone ; 144: 115825, 2021 03.
Article in English | MEDLINE | ID: mdl-33348128

ABSTRACT

Spinal cord injury (SCI) results in marked atrophy of sublesional skeletal muscle and substantial loss of bone. In this study, the effects of prolonged electrical stimulation (ES) and/or testosterone enanthate (TE) on muscle mass and bone formation in a rat model of SCI were tested. Compared to sham-transected animals, a significant reduction of the mass of soleus, plantaris and extensor digitorum longus (EDL) muscles was observed in animals 6 weeks post-SCI. Notably, ES or ES + TE resulted in the increased mass of the EDL muscles. ES or ES + TE significantly decreased mRNA levels of muscle atrophy markers (e.g., MAFbx and MurF1) in the EDL. Significant decreases in bone mineral density (BMD) (-27%) and trabecular bone volume (-49.3%) at the distal femur were observed in animals 6 weeks post injury. TE, ES and ES + TE treatment significantly increased BMD by +6.4%, +5.4%, +8.5% and bone volume by +22.2%, and +56.2% and+ 60.2%, respectively. Notably, ES alone or ES + TE resulted in almost complete restoration of cortical stiffness estimated by finite element analysis in SCI animals. Osteoblastogenesis was evaluated by colony-forming unit-fibroblastic (CFU-F) staining using bone marrow mesenchymal stem cells obtained from the femur. SCI decreased the CFU-F+ cells by -56.8% compared to sham animals. TE or ES + TE treatment after SCI increased osteoblastogenesis by +74.6% and +67.2%, respectively. An osteoclastogenesis assay revealed significantly increased TRAP+ multinucleated cells (+34.8%) in SCI animals compared to sham animals. TE, ES and TE + ES treatment following SCI markedly decreased TRAP+ cells by -51.3%, -40.3% and -46.9%, respectively. Each intervention greatly reduced the ratio of RANKL to OPG mRNA of sublesional long bone. Collectively, our findings demonstrate that after neurologically complete paralysis, dynamic muscle resistance exercise by ES reduced muscle atrophy, downregulated genes involved in muscle wasting, and restored mechanical loading to sublesional bone to a degree that allowed for the preservation of bone by inhibition of bone resorption and/or by facilitating bone formation.


Subject(s)
Spinal Cord Injuries , Animals , Bone Density , Bone and Bones , Electric Stimulation , Hindlimb , Muscle, Skeletal , Rats , Spinal Cord Injuries/therapy
19.
J Periodontol ; 92(7): 1018-1029, 2021 07.
Article in English | MEDLINE | ID: mdl-33169406

ABSTRACT

BACKGROUND: Periodontitis is caused by multiple factors involving a bacterial challenge and a susceptible host, although there is no report on gene mutation directly linked to this common disease. Mutations in the proteinase bone morphogenetic protein 1 (BMP1) were identified in patients with osteogenesis imperfecta, who display some dentin defects and alveolar bone loss. We previously reported essential roles of BMP1 and tolloid-like 1 (TLL1), two closely related extracellular proteinases with overlapping functions, in mouse periodontium growth by simultaneous knockout (KO) of both genes, although the separate roles of BMP1 and TLL1 have remained unclear. Here, we have investigated whether and how BMP1 and TLL1 separately maintain periodontal homeostasis by comparing single Bmp1 KO and Tll1 KO with double KO (dKO) phenotypes. METHODS: Floxed Bmp1 and/or Tll1 alleles were deleted in transgenic mice via ubiquitously expressed CreERT2 induced by tamoxifen treatment starting at 4-weeks of age (harvested at 18-weeks of age). Multiple approaches, including X-ray, micro-CT, calcein and alizarin red double-labeling, scanning electron microscopy, and histological and immunostaining assays, were used to analyze periodontal phenotypes and molecular mechanisms. RESULTS: Both Bmp1 KO and double KO mice exhibited severe periodontal defects, characterized by periodontal ligament (PDL) fiber loss and ectopic ossification in the expanded PDL area, and drastic reductions in alveolar bone and cementum volumes, whereas Tll1 KO mice displayed very mild phenotypes. Mechanistic studies revealed a sharp increase in the uncleaved precursor of type I collagen (procollagen I), leading to defective extracellular matrices. CONCLUSIONS: BMP1, but not TLL1, is essential for maintaining periodontal homeostasis. This occurs at least partly via biosynthetic processing of procollagen I, thereby maintaining appropriate levels of procollagen I and its activated products such as mature collagen I.


Subject(s)
Peptide Hydrolases , Tolloid-Like Metalloproteinases , Animals , Bone Morphogenetic Protein 1/genetics , Bone Morphogenetic Protein 1/metabolism , Homeostasis , Humans , Mice , Proteolysis , Tolloid-Like Metalloproteinases/genetics , Tolloid-Like Metalloproteinases/metabolism
20.
Methods Mol Biol ; 2230: 325-335, 2021.
Article in English | MEDLINE | ID: mdl-33197022

ABSTRACT

Cell lineage tracing, an old technique which originated in the nineteenth century, regains popularity and relevance due to introduction of a more sensitive tomato fluorescent protein under the control of a ubiquitous promoter (Rosa 26 gene). In addition, various tissue specific CreERT2 mouse lines are widely available, making cell lineage tracing studies more specific and powerful. In this protocol, we provide a practical guide for researchers to map progeny of specific cells such as chondrocytes during development using a fluorescent reporter (tomato, red) and multiple chondrocyte Cre lines. Further, we provide valuable examples in which these tracing lines, combined with a bone reporter mouse line (2.3 Col 1a1-GFP) or costained with different immunofluorescent proteins, revealed how a chondrocyte transdifferentiates into a bone cell in vivo.


Subject(s)
Cell Lineage/genetics , Cell Tracking/methods , Chondrocytes/ultrastructure , Skull/ultrastructure , Animals , Biomarkers/metabolism , Cell Differentiation/genetics , Cell Line , Chondrocytes/metabolism , Genes, Reporter/genetics , Mice , Mice, Transgenic , Osteocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...