Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1170825, 2023.
Article in English | MEDLINE | ID: mdl-37139114

ABSTRACT

Response regulator (RR) is an important component of the cytokinin (CK) signal transduction system associated with root development and stress resistance in model plants. However, the function of RR gene and the molecular mechanism on regulating the root development in woody plants such as citrus remain unclear. Here, we demonstrate that CcRR5, a member of the type A RR, regulates the morphogenesis of root through interacting with CcRR14 and CcSnRK2s in citrus. CcRR5 is mainly expressed in root tips and young leaves. The activity of CcRR5 promoter triggered by CcRR14 was proved with transient expression assay. Seven SnRK2 family members with highly conserved domains were identified in citrus. Among them, CcSnRK2.3, CcSnRK2.6, CcSnRK2.7, and CcSnRK2.8 can interact with CcRR5 and CcRR14. Phenotypic analysis of CcRR5 overexpressed transgenic citrus plants indicated that the transcription level of CcRR5 was associated with root length and lateral root numbers. This was also correlated to the expression of root-related genes and thus confirmed that CcRR5 is involved in the root development. Taken together, the results of this study indicate that CcRR5 is a positive regulator of root growth and CcRR14 directly regulates the expression of CcRR5. Both CcRR5 and CcRR14 can interact with CcSnRK2s.

2.
Front Plant Sci ; 14: 1161469, 2023.
Article in English | MEDLINE | ID: mdl-37035078

ABSTRACT

Salt stress damage to plants has been becoming a global concern for agriculture. The application of potassium fulvic acid (PFA) is a promising strategy to alleviate the damage to plants and improve soil quality. However, the study of PFA on plant growth and rhizosphere microbial community remains limited. In this study, microcosmic experiments were conducted to verify the effect of PFA on citrus. Trifoliate orange (Poncirus trifoliata), the most important citrus rootstock, was used to evaluate the effect of PFA on salt damage. The results showed that PFA significantly increased the contents of chlorophyll a, chlorophyll b and carotenoid by 30.09%, 17.55% and 27.43%, and effectively avoided the yellowing and scorching of leaves under salt stress. Based on the results of two-way ANOVA, the mitigation of salt stress on trifoliate seedlings primarily attributed to the enhancement of protective enzyme activities, K+/Na+ ratio and the contents of soluble sugar, soluble protein and proline. Moreover, PFA enhanced neutral protease (S-NPT), sucrase (S-SC) and urease (S-UE) of rhizosphere soil and improved soil nutrition status. The abundance of Bacillus, a kind of rhizosphere beneficial bacteria, was improved by PFA under salt stress, which was mainly associated with the increased activities of S-NPT, S-SC and S-UE. Overall, the application of PFA showed great potential for the alleviation of salt damage on citrus.

3.
Front Plant Sci ; 13: 1068961, 2022.
Article in English | MEDLINE | ID: mdl-36483961

ABSTRACT

Morphogenesis of root is a vital factor to determine the root system architecture. Cytokinin response regulators (RRs) are the key transcription factors in cytokinin signaling, which play important roles in regulating the root morphogenesis. In this study, 29 RR proteins, including 21 RRs and 8 pseudo RRs, were identified from the genome of citrus, and termed as CcRR1-21 and CcPRR1-8, respectively. Phylogenetic analysis revealed that the 29 CcRRs could be classified into four types according to their representative domains. Analysis of cis-elements of CcRRs indicated that they were possibly involved in the regulation of growth and abiotic stress resistance in citrus. Within the type A and type B CcRRs, CcRR4, CcRR5, CcRR6 and CcRR16 highly expressed in roots and leaves, and dramatically responded to the treatments of hormones and abiotic stresses. CcRR2, CcRR10, CcRR14 and CcRR19 also highly expressed in roots under different treatments. Characteristic analysis revealed that the above 8 CcRRs significantly and differentially expressed in the three zones of root, suggesting their functional differences in regulating root growth and development. Further investigation of the 3 highly and differentially expressed CcRRs, CcRR5, CcRR10 and CcRR14, in 9 citrus rootstocks showed that the expression of CcRR5, CcRR10 and CcRR14 was significantly correlated to the length of primary root, the number of lateral roots, and both primary root and the number of lateral roots, respectively. Results of this study indicated that CcRRs were involved in regulating the growth and development of the root in citrus with different functions among the members.

SELECTION OF CITATIONS
SEARCH DETAIL