Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(20): 7596-7602, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784748

ABSTRACT

Electrocatalytic valorization of PET plastic waste provides an appealing route by converting intermittent renewable energy into valuable chemicals and high-energy fuels. Normally, anodic PET hydrolysate oxidation and cathodic water reduction reactions occur simultaneously in the same time and space, which increases the challenges for product separation and operational conditions. Although these problems can be addressed by utilizing membranes or diaphragms, the parasitic cell resistance and high overall cost severely restrict their future application. Herein, we introduce a Ni(ii)/Ni(iii) redox mediator to decouple these reactions into two independent processes: an electrochemical process for water reduction to produce hydrogen fuel assisted by the oxidation of the Ni(OH)2 electrode into the NiOOH counterpart, followed subsequently by a spontaneous chemical process for the valorization of PET hydrolysate to produce formic acid with a high faradaic efficiency of ∼96% by the oxidized NiOOH electrode. This decoupling strategy enables the electrochemical valorization of PET plastic waste in a membrane-free system to produce high-value formic acid and high-purity hydrogen production. This study provides an appealing route to facilitate the transformation process of PET plastic waste into high-value products with high efficiency, low cost and high purity.

2.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594616

ABSTRACT

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Subject(s)
Microbiota , Verticillium , Verticillium/physiology , Gossypium/genetics , Gossypium/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Seeds/genetics , Plant Diseases/microbiology , Disease Resistance/genetics
3.
Theriogenology ; 222: 66-79, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38626583

ABSTRACT

In vitro maturation (IVM) and cryopreservation of goat oocytes are important for establishing a valuable genetic bank for domesticated female animals and improving livestock reproductive efficiency. C-Phycocyanin (PC) is a Spirulina extract with antioxidant, antiinflammatory, and radical scavenging properties. However, whether PC has positive effect on goat oocytes IVM or developmental competence after vitrification is still unknown. In this study, we found that first polar body extrusion (n = 293), cumulus expansion index (n = 269), and parthenogenetic blastocyst formation (n = 281) were facilitated by adding 30 µg/mL PC to the oocyte maturation medium when compared with the control groups and that supplemented with 3, 10, 100 or 300 µg/mL PC (P < 0.05). Although PC supplementation did not affect spindle formation or chromosome alignment (n = 115), it facilitated or improved cortical granules migration (n = 46, P < 0.05), mitochondria distribution (n = 39, P < 0.05), and mitochondrial membrane potential (n = 46, P < 10-4). Meanwhile, supplementation with 30 µg/mL PC in the maturation medium could significantly inhibit the reactive oxygen species accumulation (n = 65, P < 10-4), and cell apoptosis (n = 42, P < 0.05). In addition, PC increased the oocyte mRNA levels of GPX4 (P < 0.01), and decreased the mRNA and protein levels of BAX (P < 0.01). Next, we investigated the effect of PC supplementation in the vitrification solution on oocyte cryopreservation. When compared with the those equilibrate in the vitrification solution without PC, recovered oocytes in the 30 µg/mL PC group showed higher ratios of normal morphology (n = 85, P < 0.05), survival (n = 85, P < 0.05), first polar body extrusion (n = 62, P < 0.05), and parthenogenetic blastocyst formation (n = 107, P < 0.05). Meanwhile, PC supplementation of the vitrification solution increased oocyte mitochondrial membrane potential (n = 53, P < 0.05), decreased the reactive oxygen species accumulation (n = 73, P < 0.05), promoted mitochondria distribution (n = 58, P < 0.05), and inhibited apoptosis (n = 46, P < 10-3). Collectively, our findings suggest that PC improves goat oocyte IVM and vitrification by reducing oxidative stress and early apoptosis, which providing a novel strategy for livestock gamete preservation and utilization.


Subject(s)
Cryopreservation , Goats , In Vitro Oocyte Maturation Techniques , Oocytes , Phycocyanin , Vitrification , Animals , Oocytes/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Vitrification/drug effects , Cryopreservation/veterinary , Cryopreservation/methods , Phycocyanin/pharmacology , Female , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects
4.
PLoS One ; 19(4): e0300538, 2024.
Article in English | MEDLINE | ID: mdl-38558076

ABSTRACT

PURPOSE: The cryopreservation process damages oocytes and impairs development potential. As a potent antioxidant, C-phycocyanin (PC) regulates reproductive performance. However, its beneficial effects on vitrified human oocytes remain unknown. METHODS: In this study, human GV-stage oocytes obtained from controlled ovarian hyperstimulation (COH) cycles were randomly allocated to three groups: fresh oocyte without freezing (F group), vitrification in medium supplemented with PC (P group), and vitrification in medium without PC as control group (C group). After warming, viable oocytes underwent in vitro maturation. RESULTS: Our results showed that 3 µg/mL PC treatment increased the oocyte maturation rate after cryopreservation. We also found that PC treatment maintains the regular morphological features of oocytes. After PC treatment, confocal fluorescence staining showed a significant increase in the mitochondrial membrane potential of the vitrified oocytes, along with a notable decrease in intracellular reactive oxygen species and the early apoptosis rate. Finally, after in vitro maturation and parthenogenetic activation, vitrified oocytes had a higher potential for cleavage and blastocyst formation after PC treatment. CONCLUSION: Our results suggest that PC improves the developmental potential of cryopreserved human GV-stage oocytes by attenuating oxidative stress and early apoptosis and increasing the mitochondrial membrane potential.


Subject(s)
Cryopreservation , Phycocyanin , Humans , Reactive Oxygen Species/metabolism , Phycocyanin/pharmacology , Cryopreservation/methods , Oocytes , Vitrification
5.
Adv Mater ; 36(5): e2305849, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37651546

ABSTRACT

Tin dioxide (SnO2 ) with high conductivity and low photocatalytic activity has been reported as one of the best candidates for highly efficient electron transport layer (ETL) in perovskite solar cell (PSC). The state-of-the-art SnO2 layer is achieved by chemical bath deposition with tunable properties, while the commercial SnO2 nanocrystals (NCs) with low tunability still face the necessity of further improvement. Here, a kind of highly crystallized Cl-doped SnO2 NCs is reported that can form very stable aqueous dispersion with shelf life up to one year without any stabilizer, which can facilitate the fabrication of PSCs with satisfactory performance. Compared to the commercial SnO2 NCs regardless of the extrinsic Cl-doping conditions, the intrinsic Cl-doped SnO2 NCs effectively suppress the energy barrier and reduces the trap state density at the buried interface between perovskite and ETL. Consequently, stable PSCs based on such Cl-doped SnO2 NCs achieve a champion efficiency up to ≈25% for small cell (0.085 cm2 ) and ≈20% for mini-module (12.125 cm2 ), indicating its potential as a promising candidate for ETL in high-performance perovskite photovoltaics.

6.
J Phys Chem Lett ; : 5088-5093, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35653231

ABSTRACT

Perovskite photovoltaics with the advantages of facile fabrication and high efficiency have been the rising star in the field for a decade. Methylammonium lead triiodide (MAPbI3) was the first widely studied perovskite to initiate the boom of perovskite photovoltaics, but it was later considered thermodynamically instable for commercialization. Here, we demonstrate that simple cesium (Cs) doping without any complicated process can form a stable MA-based perovskite with a widened bandgap, which may broaden the application of MA-based perovskites in tandem solar cells. A record-high efficiency of ≤22% is thus achieved for a 1.6 eV bandgap perovskite solar cell. This work not only provides a new stable and efficient pure iodide candidate as a 1.6 eV bandgap perovskite but also reveals that Cs incorporation can help improve the efficiency and stability of MA-based perovskites.

7.
ACS Appl Mater Interfaces ; 14(15): 17434-17443, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35394734

ABSTRACT

The effect of substitutional metal dopants in NiOx on the structural and electronic structures is of great interest, particularly for increasing the p-type conductivities as a hole transport layer (HTL) applied in perovskite solar cells (PSCs). In this paper, experimental fabrications and density functional theory calculations have been carried out on Cd-doped NiOx films to examine the effect of divalent doping on the electronic and geometric structures of NiOx. The results indicate that divalent Cd dopants reduced the formation energy of the Ni vacancy (VNi) and created more VNi in the films, which enhanced the p-type conductivity of the NiOx films. In addition, Cd doping also deepened the valence band edge, reduced the monomolecular Shockley-Read-Hall (SRH) recombination losses, and promoted hole extraction and transport. Hence, the PSCs with Cd:NiOx HTLs manifest a high efficiency of 20.47%, a high photocurrent density of 23.00 mA cm-2, and a high fill factor of 79.62%, as well as negligible hysteresis and excellent stability. This work illustrates that divalent elements such as Cd, Zn, Co, etc. may be potential dopants to improve the p-type conductivity of the NiOx films for applications in highly efficient and stabilized PSCs.

8.
ACS Appl Mater Interfaces ; 12(45): 50684-50691, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33121249

ABSTRACT

High-quality hole-transport layers (HTLs) with excellent optical and electrical properties play a significant role in achieving high-efficient and stable inverted planar perovskite solar cells (PSCs). In this work, the optoelectronic properties of Cu-doped NiOx (Cu:NiOx) films and the photovoltaic performance of PSCs with Cu:NiOx HTLs were systematically studied. The Cu-doped NiOx with different doping concentrations was achieved by a high-temperature solid-state reaction, and Cu:NiOx films were prepared by pulsed laser deposition (PLD). Cu+ ion dopants not only occupy the Ni vacancy sites to improve the crystallization quality and increase the hole mobility, but also substitute lattice Ni2+ sites and act as acceptors to enhance the hole concentration. As compared to the undoped NiOx films, the Cu:NiOx films exhibit a higher electrical conductivity with a faster charge transportation and extraction for PSCs. By employing the prepared Cu:NiOx films as HTLs for the PSCs, a high photocurrent density of 23.17 mA/cm2 and a high power conversion efficiency of 20.41% are obtained, which are superior to those with physical vapor deposited NiOx HTLs. Meanwhile, the PSC devices show a negligible hysteresis behavior and a long-term air-stability, even without any encapsulation. The results demonstrate that pulsed laser deposited Cu-doped NiOx film is a promising HTL for realizing high-performance and air-stable PSCs.

9.
Nanoscale ; 11(47): 22871-22879, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31755514

ABSTRACT

Anisotropic Sb2Se3 is an emerging earth-abundant photocathode for photoelectrochemical water splitting. However, controlling the growth of the Sb2Se3 film with optimal [001] crystallographic orientation is still the most challenging issue. Here, we successfully synthesized [001]-oriented Sb2Se3via a reliable and facile method. The [001]-oriented Sb2Se3 film could provide an excellent carrier-migration efficiency. Consequently, we achieved a record-high photocurrent density of -20.2 mA cm-2 at 0 VRHE and a very high half-cell solar-to-hydrogen efficiency of 1.36% under 1-sun simulated solar illumination in a TiO2/[001]-Sb2Se3 photocathode. This work provides an effective strategy and important guidelines for rationally designing optoelectronic devices based on the [001]-oriented Sb2Se3 film.

SELECTION OF CITATIONS
SEARCH DETAIL
...