Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540434

ABSTRACT

Sheep horns are composed of bone and sheaths, and the BMPR1A gene is required for cartilage and osteogenic differentiation. Therefore, the BMPR1A gene may have a function related to the sheep horn, but its relationship with the sheep horn remains unclear. In this study, we first utilized RNA sequencing (RNA-seq) data to investigate the expression of the BMPR1A gene in different tissues and breeds of sheep. Second, whole-genome sequencing (WGS) data were used to explore the functional sites of the BMPR1A gene. Lastly, the allele-specific expression of the BMPR1A gene was explored. Our results indicate that BMPR1A gene expression is significantly higher in the normal horn groups than in the scurred groups. Importantly, this trend is consistent across several sheep breeds. Therefore, this finding suggests that the BMPR1A gene may be related to horn type. A total of 43 Single-Nucleotide Polymorphisms (SNPs) (F-statistics > 0.15) and 10 allele-specific expressions (ASEs) exhibited difference between the large and small horn populations. It is probable that these sites significantly impact the size of sheep horns. Compared to other polled species, we discovered ten amino acid sites that could influence horn presence. By combining RNA-seq and WGS functional loci results, we identified a functional site at position 40574836 on chromosome 25 that is both an SNP and exhibits allele-specific expression. In conclusion, we demonstrated that the BMPR1A gene is associated with horn type and identified some important functional sites which can be used as molecular markers in the breeding of sheep horns.


Subject(s)
Osteogenesis , Polymorphism, Single Nucleotide , Sheep/genetics , Animals , Chromosome Mapping/methods , Phenotype , Chromosomes
2.
Front Genet ; 14: 1239979, 2023.
Article in English | MEDLINE | ID: mdl-37799137

ABSTRACT

In humans, variation of the ATP7A gene may cause cranial exostosis, which is similar to "human horn," but the function of the ATP7A gene in sheep is still unknown. Tissue expression patterns and potential functional loci analysis of the ATP7A gene could help understand its function in sheep horn. In this study, we first identified tissue, sex, breed, and species-specific expression of the ATP7A gene in sheep based on the RNA-sequencing (RNA-seq) data. Second, the potential functional sites of the ATP7A gene were analyzed by using the whole genome sequencing (WGS) data of 99 sheep from 10 breeds. Last, the allele-specific expression of the ATP7A gene was explored. Our result showed the ATP7A gene has significantly higher expression in the big horn than in the small horn, and the ATP7A gene has high expression in the horn and skin, suggesting that this gene may be related to the horn. The PCA results show that the region around the ATP7A can distinguish horned and hornless groups to some extent, further indicating that the ATP7A may be related to horns. When compared with other species, we find seven ruminate specific amino acid sites of the ATP7A protein, which can be important to the ruminate horn. By analyzing WGS, we found 6 SNP sites with significant differences in frequency in horned and hornless populations, and most of these variants are present in the intron. But we still find some potential functional sites, including three missenses, three synonymous mutations, and four Indels. Finally, by combining the RNA-seq and WGS functional loci results, we find three mutations that showed allele-specific expression between big and small horns. This study shows that the ATP7A gene in sheep may be related to horn size, and several potential functional sites we identified here can be useful molecular markers for sheep horn breeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...