Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 122(34): 6829-6841, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30080415

ABSTRACT

Hydrogen abstractions by NO2 from symmetric ethers are investigated to determine the rate constants and explore the effect of the functional group on rate constants at different reaction sites. The involved ethers are dimethyl ether (DME), diethyl ether (DEE), dipropyl ether (DPE), and dibutyl ether (DBE). The B3LYP method with a 6-31G(2df,p) basis set is employed to optimize the ground-state geometries and for frequency and intrinsic reaction coordinate calculations. The G4 method is used to calculate the electronic energies for the small ethers (DME and DEE). Given the heavy computational cost of the G4 method, the modified G4MP2 method is applied for larger ethers (DPE and DBE) and also for DME to verify the accuracy of the G4MP2 method by benchmarking with the G4 method. The high-pressure limit rate constants are calculated within the temperature range of 500-2000 K, with the asymmetrical Eckart tunneling correction as well as one-dimensional hindered rotor treatment. The calculated rate constants agree well with the literature data, and the branch ratio analysis suggests that the cis-HONO channel basically dominates the hydrogen abstraction reactions and shows a decrease at high temperatures, followed by HNO2 and trans-HONO channels; in addition, the hydrogen abstraction at the C site adjacent to the ether bond (α reaction site) accounts for most of the reactions. Furthermore, the total rate constants of the ethers are compared to those of their half-structurally alkanes, and linear Bell-Evans-Polanyi correlations are observed.

SELECTION OF CITATIONS
SEARCH DETAIL