Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 14(5): 975-978, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30977993

ABSTRACT

We recently revealed that a previously unknown pathway for peptidoglycan biosynthesis operates in some microorganisms, including Xanthomonas oryzae. It involves two enzymes, MurD2 and MurL, which catalyze the ligation of l-glutamate (l-Glu) to UDP- N-acetylmuramic acid-l-alanine and the epimerization of the terminal l-Glu of the product, respectively. MurD2 of X. oryzae possesses a 26% identity with MurD of Escherichia coli (MurDec), which ligates d-Glu to UDP- N-acetylmuramic acid-l-alanine. To understand how X. oryzae MurD2 recognizes the isomer substrate, we estimated its structure based on that of MurDec during docking simulations. Several amino acid residues, which may be responsible for l-Glu recognition, were replaced with their corresponding amino acid residues in MurDec. Consequently, we obtained a mutated MurD2 enzyme that contained two amino acid substitutions and accepted only d-Glu as the substrate. We next tried to convert the substrate specificity of MurDec using the same strategy, but the mutant enzyme still accepted only d-Glu. Then, MurD of Streptococcus mutans (MurDsm), which possesses the key amino acid residue for l-Glu recognition identified in MurD2, was used for random screenings of mutant enzymes accepting l-Glu. We obtained a mutated MurDsm that had one amino acid substitution and slightly accepted l-Glu. A mutated MurDec possessing the corresponding one amino acid substitution also accepted l-Glu. Thus, we revealed that a few amino acid residues in MurD/MurD2 might control the acceptability of substrates with different stereochemistries.


Subject(s)
Glutamic Acid/chemistry , Peptide Synthases/chemistry , Peptidoglycan/chemistry , Crystallography, X-Ray , Molecular Docking Simulation , Mutation , Peptide Synthases/genetics , Stereoisomerism , Streptococcus mutans/enzymology , Substrate Specificity , Xanthomonas/enzymology
2.
J Am Chem Soc ; 139(12): 4243-4245, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28294606

ABSTRACT

d-Glutamate (Glu) supplied by Glu racemases or d-amino acid transaminase is utilized for peptidoglycan biosynthesis in microorganisms. Comparative genomics has shown that some microorganisms, including Xanthomonas oryzae, perhaps have no orthologues of these genes. We performed shotgun cloning experiments with a d-Glu auxotrophic Escherichia coli mutant as the host and X. oryzae as the DNA donor. We obtained complementary genes, XOO_1319 and XOO_1320, which are annotated as a hypothetical protein and MurD (UDP-MurNAc-l-Ala-d-Glu synthetase), respectively. By detailed in vitro analysis, we revealed that XOO_1320 is an enzyme to ligate l-Glu to UDP-MurNAc-l-Ala, providing the first example of MurD utilizing l-Glu, and that XOO_1319 is a novel enzyme catalyzing epimerization of the terminal l-Glu of the product in the presence of ATP and Mg2+. We investigated the occurrence of XOO_1319 orthologues and found that it exists in some categories of microorganisms, including pathogenic ones.


Subject(s)
Gammaproteobacteria/metabolism , Glutamic Acid/metabolism , Glycopeptides/metabolism , Peptidoglycan/biosynthesis , Racemases and Epimerases/metabolism , Gammaproteobacteria/chemistry , Glutamic Acid/chemistry , Glycopeptides/chemistry , Peptidoglycan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL