Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38696300

ABSTRACT

In the task of multiview multilabel (MVML) classification, each instance is represented by several heterogeneous features and associated with multiple semantic labels. Existing MVML methods mainly focus on leveraging the shared subspace to comprehensively explore multiview consensus information across different views, while it is still an open problem whether such shared subspace representation is effective to characterize all relevant labels when formulating a desired MVML model. In this article, we propose a novel label-driven view-specific fusion MVML method named L-VSM, which bypasses seeking for a shared subspace representation and instead directly encodes the feature representation of each individual view to contribute to the final multilabel classifier induction. Specifically, we first design a label-driven feature graph construction strategy and construct all instances under various feature representations into the corresponding feature graphs. Then, these view-specific feature graphs are integrated into a unified graph by linking the different feature representations within each instance. Afterward, we adopt a graph attention mechanism to aggregate and update all feature nodes on the unified graph to generate structural representations for each instance, where both intraview correlations and interview alignments are jointly encoded to discover the underlying consensuses and complementarities across different views. Moreover, to explore the widespread label correlations in multilabel learning (MLL), the transformer architecture is introduced to construct a dynamic semantic-aware label graph and accordingly generate structural semantic representations for each specific class. Finally, we derive an instance-label affinity score for each instance by averaging the affinity scores of its different feature representations with the multilabel soft margin loss. Extensive experiments on various MVML applications have verified that our proposed L-VSM has achieved superior performance against state-of-the-art methods. The codes are available at https://gengyulyu.github.io/homepage/assets/codes/LVSM.zip.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(10): 12304-12320, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37216258

ABSTRACT

Computational color constancy is an important component of Image Signal Processors (ISP) for white balancing in many imaging devices. Recently, deep convolutional neural networks (CNN) have been introduced for color constancy. They achieve prominent performance improvements comparing with those statistics or shallow learning-based methods. However, the need for a large number of training samples, a high computational cost and a huge model size make CNN-based methods unsuitable for deployment on low-resource ISPs for real-time applications. In order to overcome these limitations and to achieve comparable performance to CNN-based methods, an efficient method is defined for selecting the optimal simple statistics-based method (SM) for each image. To this end, we propose a novel ranking-based color constancy method (RCC) that formulates the selection of the optimal SM method as a label ranking problem. RCC designs a specific ranking loss function, and uses a low rank constraint to control the model complexity and a grouped sparse constraint for feature selection. Finally, we apply the RCC model to predict the order of the candidate SM methods for a test image, and then estimate its illumination using the predicted optimal SM method (or fusing the results estimated by the top k SM methods). Comprehensive experiment results show that the proposed RCC outperforms nearly all the shallow learning-based methods and achieves comparable performance to (sometimes even better performance than) deep CNN-based methods with only 1/2000 of the model size and training time. RCC also shows good robustness to limited training samples and good generalization crossing cameras. Furthermore, to remove the dependence on the ground truth illumination, we extend RCC to obtain a novel ranking-based method without ground truth illumination (RCC_NO) that learns the ranking model using simple partial binary preference annotations provided by untrained annotators rather than experts. RCC_NO also achieves better performance than the SM methods and most shallow learning-based methods with low costs of sample collection and illumination measurement.

3.
IEEE Trans Cybern ; 53(3): 1618-1628, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34499612

ABSTRACT

Partial multilabel learning (PML) aims to learn from training data, where each instance is associated with a set of candidate labels, among which only a part is correct. The common strategy to deal with such a problem is disambiguation, that is, identifying the ground-truth labels from the given candidate labels. However, the existing PML approaches always focus on leveraging the instance relationship to disambiguate the given noisy label space, while the potentially useful information in label space is not effectively explored. Meanwhile, the existence of noise and outliers in training data also makes the disambiguation operation less reliable, which inevitably decreases the robustness of the learned model. In this article, we propose a prior label knowledge regularized self-representation PML approach, called PAKS, where the self-representation scheme and prior label knowledge are jointly incorporated into a unified framework. Specifically, we introduce a self-representation model with a low-rank constraint, which aims to learn the subspace representations of distinct instances and explore the high-order underlying correlation among different instances. Meanwhile, we incorporate prior label knowledge into the above self-representation model, where the prior label knowledge is regarded as the complement of features to obtain an accurate self-representation matrix. The core of PAKS is to take advantage of the data membership preference, which is derived from the prior label knowledge, to purify the discovered membership of the data and accordingly obtain more representative feature subspace for model induction. Enormous experiments on both synthetic and real-world datasets show that our proposed approach can achieve superior or comparable performance to state-of-the-art approaches.

4.
Article in English | MEDLINE | ID: mdl-37015384

ABSTRACT

Graph convolutional networks (GCNs) are widely believed to perform well in the graph node classification task, and homophily assumption plays a core rule in the design of previous GCNs. However, some recent advances on this area have pointed out that homophily may not be a necessity for GCNs. For deeper analysis of the critical factor affecting the performance of GCNs, we first propose a metric, namely, neighborhood class consistency (NCC), to quantitatively characterize the neighborhood patterns of graph datasets. Experiments surprisingly illustrate that our NCC is a better indicator, in comparison to the widely used homophily metrics, to estimate GCN performance for node classification. Furthermore, we propose a topology augmentation graph convolutional network (TA-GCN) framework under the guidance of the NCC metric, which simultaneously learns an augmented graph topology with higher NCC score and a node classifier based on the augmented graph topology. Extensive experiments on six public benchmarks clearly show that the proposed TA-GCN derives ideal topology with higher NCC score given the original graph topology and raw features, and it achieves excellent performance for semi-supervised node classification in comparison to several state-of-the-art (SOTA) baseline algorithms.

5.
IEEE Trans Cybern ; 52(2): 899-911, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32452795

ABSTRACT

Partial-label learning (PLL) aims to solve the problem where each training instance is associated with a set of candidate labels, one of which is the correct label. Most PLL algorithms try to disambiguate the candidate label set, by either simply treating each candidate label equally or iteratively identifying the true label. Nonetheless, existing algorithms usually treat all labels and instances equally, and the complexities of both labels and instances are not taken into consideration during the learning stage. Inspired by the successful application of a self-paced learning strategy in the machine-learning field, we integrate the self-paced regime into the PLL framework and propose a novel self-paced PLL (SP-PLL) algorithm, which could control the learning process to alleviate the problem by ranking the priorities of the training examples together with their candidate labels during each learning iteration. Extensive experiments and comparisons with other baseline methods demonstrate the effectiveness and robustness of the proposed method.


Subject(s)
Algorithms , Machine Learning
6.
IEEE Trans Pattern Anal Mach Intell ; 40(12): 2853-2867, 2018 12.
Article in English | MEDLINE | ID: mdl-29989966

ABSTRACT

Graph matching aims at establishing correspondences between graph elements, and is widely used in many computer vision tasks. Among recently proposed graph matching algorithms, those utilizing the path following strategy have attracted special research attentions due to their exhibition of state-of-the-art performances. However, the paths computed in these algorithms often contain singular points, which could hurt the matching performance if not dealt properly. To deal with this issue, we propose a novel path following strategy, named branching path following (BPF), to improve graph matching accuracy. In particular, we first propose a singular point detector by solving a KKT system, and then design a branch switching method to seek for better paths at singular points. Moreover, to reduce the computational burden of the BPF strategy, an adaptive path estimation (APE) strategy is integrated into BPF to accelerate the convergence of searching along each path. A new graph matching algorithm named ABPF-G is developed by applying APE and BPF to a recently proposed path following algorithm named GNCCP (Liu & Qiao 2014). Experimental results reveal how our approach consistently outperforms state-of-the-art algorithms for graph matching on five public benchmark datasets.

7.
IEEE Trans Neural Netw Learn Syst ; 27(6): 1190-200, 2016 06.
Article in English | MEDLINE | ID: mdl-27046853

ABSTRACT

Saliency detection is an important procedure for machines to understand visual world as humans do. In this paper, we consider a specific saliency detection problem of predicting human eye fixations when they freely view natural images, and propose a novel dual low-rank pursuit (DLRP) method. DLRP learns saliency-aware feature transformations by utilizing available supervision information and constructs discriminative bases for effectively detecting human fixation points under the popular low-rank and sparsity-pursuit framework. Benefiting from the embedded high-level information in the supervised learning process, DLRP is able to predict fixations accurately without performing the expensive object segmentation as in the previous works. Comprehensive experiments clearly show the superiority of the proposed DLRP method over the established state-of-the-art methods. We also empirically demonstrate that DLRP provides stronger generalization performance across different data sets and inherits the advantages of both the bottom-up- and top-down-based saliency detection methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...