Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int Orthop ; 47(3): 763-771, 2023 03.
Article in English | MEDLINE | ID: mdl-36646902

ABSTRACT

PURPOSES: Temporary hemiepiphysiodesis (TH) using eight-plates is one of the most frequently performed surgeries for correcting angular deformities of the lower extremities in adolescents. Rarely have studies examined children with X-linked hypophosphataemic rickets (X-LHPR) treated with TH using eight-plates. This study was conducted to investigate the efficacy, the endpoint, and the complications of TH using eight-plates to correct angular deformities of the lower extremities in skeletally immature children. METHODS: We reviewed a total of 26 children (86 physes, 52 knees) with X-LHPR (mean age of 6.2 years, range from 2 to 13 years) who underwent TH using eight-plate to correct angular deformities of the lower extremities. Radiographs and clinical records of these patients were evaluated for demographic data and related clinical factors. RESULTS: The average correction of the mechanical lateral distal femoral angle (mLDFA) was 11.7 ± 8.7° (range from 1.0 to 29.7°), and the average correction of the mechanical medial proximal tibial angle (mMPTA) was 8.4 ± 5.0° (range from 0.3 to 16.7°). The mean deformity correction time was 22.7 months (range from 7 to 60 months), and the mean follow-up after eight-plate removal was 43.9 months (range from 24 to 101 months). Overall, 76.9% (20/26 patients) of the angular deformities of the knee were completely corrected and 15.4% (4/26) of the patients received osteotomy surgery. The femoral correction velocity (0.9° per month) was significantly higher than the proximal tibial (0.6° per month) (p = 0.02). The correction velocity of the mLDFA and mMPTA with the TH procedure was faster than that in the absence of intervention (0.9° vs. 0.2°, 0.7° vs. 0.4° per month, p < 0.05). The correction velocity of the mLDFA (1.2° vs. 0.5° per month, [Formula: see text]) and mMPTA (0.7° vs. 0.5° per month, p = 0.04) of patients whose age ≤ five years old was faster than that of patients whose age > five years old. A total of 69.2% (18/26) patients experienced one TH procedure using eight-plates only. Two patients had screw loosening (2/26, 7.7%). One patient (1/26, 3.8%) had a rebound phenomenon after the removal of eight-plate and had the TH procedure again. There was no breakage, infection, physis preclosure, or limited range of movement found in the follow-up. CONCLUSION: TH using eight-plates is a safe and effective procedure with a relatively low incidence of complication and rebound, and it could be used as part of a streamlined treatment for younger X-LHPR patients with resistant or progressive lower limb deformity despite optimal medical treatment. Early intervention can achieve better results.


Subject(s)
Familial Hypophosphatemic Rickets , Adolescent , Humans , Child , Child, Preschool , Familial Hypophosphatemic Rickets/surgery , Lower Extremity/surgery , Tibia/surgery , Knee Joint/diagnostic imaging , Knee Joint/surgery , Knee Joint/abnormalities , Growth Plate/surgery , Bone Plates , Retrospective Studies
2.
J Hazard Mater ; 439: 129626, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36104896

ABSTRACT

Arsenic (As) pollution in paddy fields is a major threat to rice safety. Existing As remediation techniques are costly, require external chemical addition and degrade soil properties. Here, we report the use of plastic tubes as a recyclable tool to precisely extract As from contaminated soils. Following insertion into flooded paddy soils, polyethylene tube walls were covered by thin but massive Fe coatings of 76.9-367 mg Fe m-2 in 2 weeks, which adsorbed significant amounts of As. The formation of tube-wall Fe oxides was driven by local Fe-oxidizing bacteria with oxygen produced by oxygenic phototrophs (e.g., Cyanobacteria) or diffused from air through the tube wall. The tubes with As-bound Fe oxides can be easily separated from soil and then washed and reused. We tested the As removal efficiency in a pot experiment to remove As from ~ 20 cm depth/40 kg soils in a 2-year experiment and achieved an overall removal efficiency of 152 mg As m-2 soil year-1, comparable to phytoremediation with the As hyperaccumulator Pteris vittata. The cost of Fe hooks was estimated at 8325 RMB ha-1 year-1, and the profit of growing rice (around 16080 RMB ha-1 year-1 can be still maintained. The As accumulated in rice tissues was markedly decreased in the treatment (>11.1 %). This work provides a low-cost and sustainable soil remediation method for the targeted removal of As from soils and a useful tool for the study and management of the biogeochemical Fe cycle in paddy soils.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/metabolism , Biodegradation, Environmental , Ferric Compounds , Iron/chemistry , Oryza/metabolism , Oxides/metabolism , Plastics/metabolism , Soil/chemistry , Soil Pollutants/metabolism
3.
J Environ Sci (China) ; 102: 1-10, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33637235

ABSTRACT

The redox-sensitive elements, such as iron, manganese, sulfur, phosphorus, and arsenic, shift their speciation every millimeter (mm) across the soil-water interface in the flooded soil environments. Monitoring of element speciation at this high-resolution (HR) within the SWI is still difficult. The key challenge lies in obtaining sufficient porewater samples at specific locations along the soil gradient for downstream analysis. Here with an optimized inductively coupled plasma mass spectrometry (ICP-MS) method and a HR porewater sampler, we demonstrate mm-scale element profiles mapping across the SWI in paddy soils. High-concentrations of iron and manganese (> 10 mg/L) were measured by ICP-MS in an extended dynamic range mode to avoid signal overflow. The iron profile along the SWI generated by the ICP-MS method showed no significant difference (p < 0.05) compared to that measured independently using a colorimetric method. Furthermore, four arsenic (arsenite, arsenate, monomethylarsonic and dimethylarsinic acid), two phosphorus (phosphite and phosphate) and two sulfur (sulfide and sulfate) species were separated in 10 min by ion chromatography -ICP-MS with the NH4HCO3 mobile phase. We verified the technique using paddy soils collected from the field, and present the mm-scale profiles of iron, manganese, and arsenic, phosphorus, sulfur species (relative standard deviation < 8%). The technique developed in this study will significantly promote the measurement throughput in limited samples (e.g. 100 µL) collected by HR samplers, which would greatly facilitate redox-sensitive elements biogeochemical cycling in saturated soils.


Subject(s)
Arsenic , Soil Pollutants , Arsenic/analysis , Oxidation-Reduction , Soil , Soil Pollutants/analysis , Water
4.
Environ Pollut ; 260: 113989, 2020 May.
Article in English | MEDLINE | ID: mdl-31991356

ABSTRACT

The increase in toxic heavy metal pollutants in rice paddies threatens food safety. There is an urgent need for lnow-cost remediation technology for immobilizing these trace metals. In this study, we showed that the application of the soil microbial fuel cell (sMFC) can greatly reduce the accumulation of Cd, Cu, Cr, and Ni in the rice plant tissue. In the sMFC treatment, the accumulation of Cd, Cu, Cr, and Ni in rice grains was 35.1%, 32.8%, 56.9% and 21.3% lower than the control, respectively. The reduction of these elements in the rice grain was due to their limited mobility in the soil porewater of soils employing the sMFC. The restriction in Cd, Cu, Cr, and Ni bioavailability was ascribed to the sMFC ability to immobilize trace metals through both biotic and abiotic means. The results suggest that the sMFC may be used as a promising technique to limit toxic trace metal bioavailability and translocation in the rice plants.


Subject(s)
Bioelectric Energy Sources , Metals, Heavy , Oryza/chemistry , Soil Pollutants , Cadmium , Soil
5.
Mol Med Rep ; 19(4): 2808-2816, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30720141

ABSTRACT

Developmental dysplasia of the hip (DDH) is a common musculoskeletal disorder characterized by progressive joint soreness and limited mobility. The aim of the present study was to investigate the pathological changes and inflammatory infiltration in the hypertrophic synovium of the hip joint associated with the progression of DDH. Synovial biopsies in the hip joint are obtained from patients with moderate DDH and severe DDH during surgery. These biopsies are processed for histological and immunohistochemical (IHC) analysis and investigation of the pathological processes in a synovium, including types of inflammatory cell infiltration, synovial angiogenesis and fibrosis, neuron endings and neuropeptide invasion. Correlation analysis was performed between the mean optical density (MOD) of each antibody, and Harris hip score (HHS) and visual analogue score (VAS) using the Spearman correlation test. Chronic inflammation in the synovium was observed via the positive IHC staining of inflammatory cells, such as T cells, B cells, macrophages and leukocytes. Excessive staining of vimentin and α smooth muscle actin in the synovium of severe DDH represented significant fibrosis and angiogenesis. These targets were also significantly correlated with HHS in severe DDH. The MOD levels of CD68 (indicators of macrophage) indicated apparent correlations with HHS and VAS in patients with severe DDH. The labels of nerve fibers and pain transmission indicators were as follows: Neurofilament­200 and substance P. Calcitonin gene­related peptide was upregulated in the synovium of severe DDH in contrast to that in the synovium of moderate DDH. The MOD levels of NF­200, SP and CGRP were correlated with VAS in severe DDH. The pathology of DDH includes chronic inflammatory cell infiltration corresponding with nerve fibers and fibroblastic proliferation, which might contribute to arthritis progression and joint soreness in DDH.


Subject(s)
Hip Dislocation, Congenital/diagnosis , Inflammation/pathology , Synovial Membrane/pathology , Biomarkers , Biopsy , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Disease Progression , Fibrosis , Humans , Immunohistochemistry , Radiography , Synovial Membrane/metabolism , Synovitis/metabolism , Synovitis/pathology
6.
IUBMB Life ; 69(3): 179-187, 2017 03.
Article in English | MEDLINE | ID: mdl-28185391

ABSTRACT

Developmental dysplasia of the hip (DDH) is a developmental disorder that has long-term chronic pain and limited hip joint mobility as major pathological characteristics. This study aims to access the association between the development of DDH and cartilage metabolic disorders. Cartilage tissue samples were acquired from patients with DDH, osteoarthritis (OA) and femoral neck fracture. The proteoglycan level was evaluated by safranin O-fast green, toluidine blue and hematoxylin-eosin (HE) staining. The levels of collagen-II (Col-II), collagen-X (Col-X) and metal matrix proteinase-13 (MMP-13) were evaluated by immunohistochemistry (IHC) and Western blotting analysis. The morphologic evaluation of cartilage was conducted by transmission electron microscopy (TEM). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the mRNA level of aggrecan, Col-II, Col-X and MMP-13. The aggrecan level in the cartilage matrix was significantly decreased in DDH patients by safranin O-fast green and toluidine blue staining in comparison with that in the OA and control groups. In contrast with the OA group, the Col-II expression was reduced while the MMP-13 expression increased in DDH patients, as shown by IHC and Western blotting analysis. The collagenous fibrils in cartilage of DDH patients appeared significantly sparse and disordered in the TEM analysis. In DDH patients, the mRNA expression levels of Col-II and aggrecan were markedly reduced, while the mRNA expression of Col-X was markedly increased, compared with the OA patients. There is severe articular cartilage degeneration in DDH patients. This observation provides us with new insight into cartilage metabolic regulation in DDH. © 2017 IUBMB Life, 69(3):179-187, 2017.


Subject(s)
Cartilage, Articular/pathology , Hip Dislocation, Congenital/pathology , Adult , Aggrecans/genetics , Aggrecans/metabolism , Cartilage, Articular/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Collagen Type X/genetics , Collagen Type X/metabolism , Female , Gene Expression , Hip Dislocation, Congenital/metabolism , Humans , Male , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Young Adult
7.
J Cell Biochem ; 118(2): 286-297, 2017 02.
Article in English | MEDLINE | ID: mdl-27335248

ABSTRACT

Osteoblasts are essential for maintaining skeletal architecture and modulating bone microenvironment homeostasis. From numerous associated investigations, the BMP-2 pathway has been well-defined as a vital positive modulator of bone homeostasis. Gremlin2 (Grem2) is a bone morphogenetic protein (BMP) antagonists. However, the effect of Grem2 on the BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs) remains ambiguous. This study aimed to analyze the procedure in vitro and in vivo. The differentiation of hBMSCs was assessed by determining the expression levels of several osteoblastic genes, as well as the enzymatic activity and calcification of alkaline phosphatase. We found that Grem2 expression was upregulated by BMP-2 within the range of 0-1 µg/mL, and significant increases were evident at 48, 72, and 96 h after BMP-2 treatment. Si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs, whereas overexpression of Grem2 had the opposite trend. The result was confirmed using a defective femur model. We also discovered that the BMP-2/Smad/Runx2 pathway played an important role in the process. This study showed that si-Grem2 increased the BMP-2-induced osteogenic differentiation of hBMSCs via the BMP-2/Smad/Runx2 pathway. J. Cell. Biochem. 118: 286-297, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bone Marrow Cells/metabolism , Bone Morphogenetic Protein 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis , Signal Transduction , Smad Proteins/metabolism , Bone Marrow Cells/cytology , Bone Morphogenetic Protein 2/genetics , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/genetics , Cytokines , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mesenchymal Stem Cells/cytology , Smad Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...