Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Leukoc Biol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721720

ABSTRACT

N6-methyladenosine (m6A) is the most common modification of eukaryotic RNA. m6A participates in RNA splicing, nuclear export, translation, and degradation through regulation by methyltransferases, methylation readers, and demethylases, affecting mRNA stability and translation efficiency. Through the dynamic and reversible regulatory network composed of " Writers-Erasers-Readers", m6A modification plays a unique role in the process of hematopoiesis. Acute myeloid leukemia (AML) is a heterogeneous disease characterized by malignant proliferation of hematopoietic stem cells/progenitor cells. Many studies have shown that m6A-related proteins are abnormally expressed in AML and play an important role in the occurrence and development of AML, acting as carcinogenic or anticancer factors. Here, we describe the mechanisms of action of reversing m6A modification in hematopoiesis and AML occurrence and progression to provide a basis for further research on the role of m6A methylation and its regulatory factors in normal hematopoiesis and AML, to ultimately estimate its potential clinical value.

2.
Sci Total Environ ; 928: 172211, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38583617

ABSTRACT

During the freeze-thaw cycles of ice-covered lakes, DOM undergoes a series of transformations including enrichment, dispersion, and filtration. However, the mechanisms and influence factors on lake pollution processes remain unclear. Therefore, this study investigates the distribution of DOM components and elucidate the role of ice-layer sieving its mechanisms within ice-water-sediments. Study identifies significant variations in the characteristics of DOM, protein-like substances tend to migrate towards the ice layer, while humic-like substances predominantly remain in water. This selective distribution is primarily influenced by the physical and chemical properties of DOM during the freezing process. The ice layer acts as a sieve, allowing smaller molecules such as protein-like substances to pass through more easily, while larger molecules like humic-like substances are retained in the water. Additionally, Temperature plays a pivotal role in affecting the contents of DOM. As the temperature decreases, the solubility of DOM decreases, leading to its precipitation and enrichment in sediments. Conversely, an increase in temperature can facilitate the release of DOM from sediments into the water. Furthermore, high content of total dissolved solids can affect the solubility and stability of DOM, potentially leading to changes in its composition and distribution. These insights provide a deeper understanding of the complex interplay between thermal processes and chemical dynamics within ice-covered aquatic environments. They offered valuable insights into the behavior of organic pollutants in frozen lake systems. The findings have potential implications for environmental management strategies aimed at mitigating the effects of climate.

3.
Infect Agent Cancer ; 19(1): 15, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654358

ABSTRACT

BACKGROUND: Epidemiological research and systematic meta-analyses indicate a higher risk of B-cell lymphomas in patients with chronic hepatitis C virus (HCV) compared to non-infected individuals. However, the genetic links between HCV and these lymphomas remain under-researched. METHODS: Mendelian randomization analysis was employed to explore the association between chronic hepatitis C (CHC) and B-cell lymphomas as well as chronic lymphocytic leukemia (CLL). Approximate Bayes Factor (ABF) localization analysis was conducted to find shared genetic variants that might connect CHC with B-cell lymphomas and chronic lymphocytic leukemia (CLL). Furthermore, The Variant Effect Predictor (VEP) was utilized to annotate the functional effects of the identified genetic variants. RESULTS: Mendelian randomization revealed a significant association between CHC and increased diffuse large B cell lymphoma (DLBCL) risk (OR: 1.34; 95% CI: 1.01-1.78; P = 0.0397). Subsequent colocalization analysis pinpointed two noteworthy variants, rs17208853 (chr6:32408583) and rs482759 (chr6:32227240) between these two traits. The annotation of these variants through the VEP revealed their respective associations with the butyrophilin-like protein 2 (BTNL2) and notch receptor 4 (NOTCH4) genes, along with the long non-coding RNA (lncRNA) TSBP1-AS1. CONCLUSION: This research provides a refined genetic understanding of the CHC-DLBCL connection, opening avenues for targeted therapeutic research and intervention.

4.
Environ Res ; 251(Pt 1): 118614, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38462084

ABSTRACT

Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.


Subject(s)
Environmental Monitoring , Organophosphates , Rivers , Water Pollutants, Chemical , Risk Assessment , Water Pollutants, Chemical/analysis , Organophosphates/analysis , Rivers/chemistry , Esters/analysis , China , Tandem Mass Spectrometry , Flame Retardants/analysis , Cities
5.
Br J Haematol ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38400570

ABSTRACT

A chemotherapy-based mobilization regimen in patients who mobilize poorly, based on etoposide, cytarabine and pegfilgrastim (EAP), has recently been introduced. The aim of this prospective study was to investigate the efficacy and safety of the EAP regimen in patients with poorly mobilizing multiple myeloma (MM) or lymphoma. This single-arm clinical trial was performed at eight public hospitals in China and was registered as a clinical trial (NCT05510089). The inclusion criteria were; (1) diagnosis of MM or lymphoma, (2) defined as a 'poor mobilizer' and (3) aged 18-75 years. The EAP regimen consisted of etoposide 75 mg/m2 /day on days 1-2, cytarabine 300 mg/m2 every 12 h on days 1-2 and pegfilgrastim 6 mg on day 6. The primary endpoint of the study was the ratio of patients achieving adequate mobilization (≥2.0 × 106 CD34+ cells/kg). From 1 September 2022 to 15 August 2023, a total of 58 patients were enrolled, 53 (91.4%) achieved adequate mobilization, while 41 (70.7%) achieved optimal mobilization with a median number of cumulative collected CD34+ cells was 9.2 (range 2.1-92.7) × 106 /kg and the median number of apheresis per patient of 1.2. The median time from administration of the EAP regimen to the first apheresis was 12 days. Approximately 8.6% of patients required plerixa for rescue, which was successful. Twelve (20.7%) of the 58 patients suffered grade 2-3 infections, while 25 (43.1%) required platelet transfusions. The duration of neutrophil and platelet engraftment was 11 days. In conclusion, these results suggest that the EAP mobilization regimen might be a promising option for poorly mobilizing patients with MM or lymphoma.

6.
Sci Total Environ ; 920: 170876, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367733

ABSTRACT

Seasonal ice cover plays a crucial role in shaping the physical characteristics of lakes in cold and arid regions. Moreover, the ice significantly affects the level and quality of dissolved organic matter (DOM) in the water column. We utilized spectroscopy and mass spectrometry to analyze the molecular composition and distribution of DOM in ice cores and under-ice water in Daihai Lake. We identified the main environmental factors affecting DOM migration through structural equation modelling (SEM). The freezing process created a repulsive effect on DOM, with water samples demonstrating a greater DOM content than ice. The dominant part of the DOM in the ice cores was mainly comprised of protein-like materials (71.45 %), whereas water consisted of humus-like materials (54.81 %). The average molecular weight of the ice cover DOM (m/z = 396.77) was smaller than in the under-ice water (m/z = 405.42). While low-molecular and low-aromatic protein-like material tended to be trapped in the ice layer during ice formation, large-molecular and highly aromatic humic substances were more easily expelled into the water. Interestingly, condensed aromatic hydrocarbons were found to occur less frequently in the ice phase (11 %) compared to the aqueous phase (13 %). Both the lipid and protein/aliphatic compound structures exhibited slightly higher ratios in the ice (6 % and 8 %, respectively) than in water (1 % and 5 %, respectively). SEM between the ice cover environment and DOM indicated that the ice can influence the distribution pattern of DOM through the regulation of internal solute factors and other chemicals. The nature of the DOM and the rate of ice growth also play critical roles in determining the distribution mechanism of DOM for ice and water. The pollutant distribution characteristics and migration patterns between ice and water are essential for comprehending environmental water pollution and promoting pollution management and protection measures in cold region lakes.

7.
Water Res ; 252: 121176, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38295460

ABSTRACT

Water soluble organic carbon (WSOC) derived from biomass pyrolytic smoke is deposited through atmospheric aerosols, negatively affecting aquatic ecological quality and safety. However, the temperature-dependent molecular diversity and dynamic formation of smoke-derived WSOC remain poorly understood in water. Herein, we explored the molecular-level formation mechanism of pyrolytic smoke-derived WSOC in water to explain the evolution, heterogeneous correlations, and sequential responses of molecules and functional groups to increasing pyrolysis temperature. Two-dimensional correlation spectroscopy was used to innovatively establish the characteristic correlations between spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry. Temperature-dependent formation of WSOC exhibited diversity in absorbance/fluorescent components, unique/common molecules, and their chemical parameters, showing the simultaneous formation and degradation reactions. The common WSOC molecules with lower and higher degrees of oxidation showed significant positive and negative correlations with the fluorescent components, respectively. The primary sequential response of WSOC molecules to increasing pyrolysis temperature (lignin-like molecules â†’ unsaturated hydrocarbons, condensed aromatic molecules â†’ lipid-like/aliphatic-/peptide-like molecules) corresponded to the temperature response of functional groups (carboxylic/alcoholic â†’ polysaccharides â†’ aromatics/amides/phenolic/aliphatic groups), demonstrating well synergistic relationships between them. These novel findings will contribute to the comprehensive understanding and assessments of potential environmental behavior or risks of WSOC in aquatic ecosystems.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Smoke/analysis , Dissolved Organic Matter , Biomass , Water/chemistry , Ecosystem , Pyrolysis , Temperature , Carbon/analysis , Aerosols/analysis
8.
Br J Haematol ; 204(3): 861-870, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37939390

ABSTRACT

Gilteritinib, a potent FMS-like tyrosine kinase 3 (FLT3) inhibitor, was approved for relapsed/refractory (R/R) FLT3-mutated acute myeloid leukaemia (AML) patients but still showed limited efficacy. Here, we retrospectively analysed the efficacy and safety of different gilteritinib-based combination therapies (gilteritinib plus hypomethylating agent and venetoclax, G + HMA + VEN; gilteritinib plus HMA, G + HMA; gilteritinib plus venetoclax, G + VEN) in 33 R/R FLT3-mutated AML patients. The composite complete response (CRc) and modified CRc (mCRc) rates were 66.7% (12/18) and 88.9% (16/18) in patients received G + HMA + VEN, which was higher compared with that in G + HMA (CRc: 18.2%, 2/11; mCRc: 45.5%, 5/11) or G + VEN (CRc: 50.0%, 2/4; mCRc: 50.0%, 2/4). The median overall survival (OS) for G + HMA + VEN, G + HMA and G + VEN treatment was not reached, 160.0 days and 231.0 days. The median duration of remission (DOR) for G + HMA + VEN, G + HMA and G + VEN treatment was not reached, 82.0 days and 77.0 days. Four patients in the G + HMA + VEN group received alloHSCT after remission exhibited prolonged median DOR. The most common grade 3/4 adverse events were cytopenia, febrile neutropenia and pulmonary infection; there were no differences among the three groups. In conclusion, our data demonstrated promising response of G + HMA + VEN combination therapy in R/R FLT3-mutated AML, and it may be considered an effective therapy bridge to transplantation.


Subject(s)
Aniline Compounds , Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Pyrazines , Sulfonamides , fms-Like Tyrosine Kinase 3 , Adult , Humans , Retrospective Studies
9.
Front Oncol ; 13: 1308869, 2023.
Article in English | MEDLINE | ID: mdl-38125948

ABSTRACT

Cell death is a complex process required to maintain homeostasis and occurs when cells are damage or reach end of life. As research progresses, it is apparent that necrosis and apoptosis do not fully explain the whole phenomenon of cell death. Therefore, new death modalities such as autophagic cell death, and ferroptosis have been proposed. In recent years, ferroptosis, a new type of non-apoptotic cell death characterized by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation, has been receiving increasing attention. Ferroptosis can be involved in the pathological processes of many disorders, such as ischemia-reperfusion injury, nervous system diseases, and blood diseases. However, the specific mechanisms by which ferroptosis participates in the occurrence and development of leukemia still need to be more fully and deeply studied. In this review, we present the research progress on the mechanism of ferroptosis and its role in leukemia, to provide new theoretical basis and strategies for the diagnosis and treatment of clinical hematological diseases.

10.
Clin Exp Med ; 23(8): 4585-4595, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37910257

ABSTRACT

Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Studies indicated that inflammatory cytokines involved in the occurrence and progression of DLBCL and it is challenging to discern causality from the effects due to the presence of feedback loops. We conducted a bidirectional Mendelian randomization (MR) study to investigate the potential causal relationship between DLBCL and inflammatory cytokines. The genetic variants associated with inflammatory cytokines were obtained from a genome-wide association study (GWAS) involving 8293 European participants, and the data on 1010 individuals with DLBCL were sourced from the FinnGen consortium. The primary method employed in this study was the inverse-variance weighted (IVW) method, with supplementary analyses conducted using the MR-Egger, weighted median, and MR-PRESSO approaches. Based on the IVW method, genetically predicted that increasing level of Monokine induced by interferon gamma (MIG/CXC chemokine ligand 9, CXCL9) [OR: 1.31; 95% CI: 1.05-1.62; P = 0.01] and interferon gamma-induced protein 10(IP-10/CXC chemokine ligand 10, CXCL10) [OR: 1.30; 95% CI: 1.02-1.66; P = 0.03] showed suggestive associations with DLBCL risk. DLBCL may increase the level of macrophage colony-stimulating factor (M-CSF) [OR: 1.12; 95% CI: 1.01-1.2; P = 0.03], tumor necrosis factor beta (TNF-ß) [OR: 1.16; 95% CI: 1.02-1.31; P = 0.02] and TNF-related apoptosis-inducing ligand (TRAIL) [OR: 1.07; 95% CI: 1.01-1.13; P = 0.02]. This study presents evidence supporting a causal relationship between inflammation cytokines and DLBCL. Specifically, MIG/CXCL9 and IP-10/CXCL10 were identified as indicators of upstream causes of DLBCL; while, DLBCL itself was found to elevate the levels of M-CSF, TNF-ß, and TRAIL. These findings suggest that targeting specific inflammatory factors through regulation and intervention could serve as a potential approach for the treatment and prevention of DLBCL.


Subject(s)
Cytokines , Lymphoma, Large B-Cell, Diffuse , Humans , Macrophage Colony-Stimulating Factor , Lymphotoxin-alpha , Interferon-gamma , Chemokine CXCL10 , Genome-Wide Association Study , Ligands , Mendelian Randomization Analysis , Lymphoma, Large B-Cell, Diffuse/genetics
11.
Waste Manag Res ; : 734242X231190811, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37555586

ABSTRACT

Soil microplastic pollution is currently a worldwide concern. Microplastics are organic pollutants that are abundant in the natural environment, are persistent and difficult to degrade and may endanger human health while harming the environment. This article offers a bibliometric analysis of the environmental behaviour of microplastics in soils, as well as a thorough statistical analysis of research goals and trends in this field. We conducted a thorough search of all relevant literature from 2012 to 2022 in the Web of Science core database. The data analysis shows that, starting in 2012, there has been an upward trend in the number of articles about soil microplastic pollution. It can also be seen that China is relatively ahead of the curve in this area of research, followed by the United Kingdom and the United States. This article also systematically describes the research hotspots in this field. The results show that the current research on soil microplastics is mainly focused on their identification, enrichment and toxicity, whereas studies on the migration and transformation of soil microplastics and the mechanism of interaction with other pollutants are still lacking. Our results provide ideas and prospects for future research in this field.

12.
Br J Haematol ; 202(6): 1119-1126, 2023 09.
Article in English | MEDLINE | ID: mdl-37434414

ABSTRACT

To reducing chemotherapy-related toxicity, the chemo-free regimens become a new trend of Ph + ALL treatment. Therefore, we conducted a phase 2 trial of dasatinib plus prednisone, as induction (Course I) and early consolidation (Courses II and III) treating newly diagnosed Ph + ALL. The trial was registered at www.chictr.org.cn, ChiCTR2000038053. Forty-one patients were enrolled from 15 hospitals. The complete remission (CR) was 95% (39/41), including two elderly induction deaths. By the end of Course III, 25.6% (10/39) of patients achieved a complete molecular response. With a median follow-up of 15.4 months, 2-year disease-free survival (DFS) were 100% and 33% for patients who receiving haematopoietic stem cell transplantation (HSCT) at CR1 and receiving chemotherapy alone respectively. When censored at time of HSCT, 2-year DFS were 51% and 45% for young and elderly patients (p = 0.987). 2-year overall survival were 45%, 86% and 100% for patients without HSCT, receiving HSCT after relapse and receiving HSCT at CR1 respectively. A total of 12 patients had marrow recurrences and one had CNS relapse, with 38% occurred early (between Courses I and III). IKZF1 gene deletion was shown to be associated with relapse (p = 0.019). This chemo-free induction and early consolidation regimen was efficacious and well-tolerated in de novo Ph + ALL. Allogeneic HSCT conferred definite survival advantage after chemo-free induction.


Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Adult , Aged , Dasatinib/adverse effects , Prednisone/adverse effects , Philadelphia Chromosome , Neoplasm Recurrence, Local/drug therapy , Disease-Free Survival , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Remission Induction , Antineoplastic Combined Chemotherapy Protocols/adverse effects
13.
Environ Pollut ; 334: 122186, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37442327

ABSTRACT

The harmful cyanobacteria bloom is frequently occurring in the aquatic environment and poses a tremendous threat to both aquatic organisms and ecological function. In this study, a series of Cu2+ doped biochar (BC) composites (Cu-BCs) with different loading ratios (0.1 %-5 wt %) (Cu-BC-0.1/0.5/1/2.5/5) was successfully fabricated through a one-step adsorption method for in-situ inactivation of Microcystis aeruginosa and simultaneous removal of microcystin-LR (MC-LR). Compared with the single BC/CuSO4 and other Cu-BCs composites, the Cu-BC-2.5 exhibited the best algae inactivation performance with the lowest 72 h medium effective concentration (EC50) value of 0.34 mg/L and highest chlorophyll α degradation efficiency of 8.31 g/g. Notably, the as-prepared Cu-BC-2.5 maintained good inactivation performance in the near-neutral pH (6.5-8.5), and the presence of humic acid and salts such as Na2CO3 and NaCl. The outstanding inhibitory effect of the Cu-BC-2.5 could be explained by the synergetic effect between biochar and Cu2+, which greatly elevated reactive oxygen species (ROS) intensity and in turn led to severe membrane damage and collapse of the antioxidant system. Additionally, the Cu-BC-2.5 could simultaneously remove the released microcystin-LR (MC-LR) throughout the inactivation process and prevent secondary pollution, thus offering a new insight into the alleviation of harmful cyanobacteria in aquatic environment.


Subject(s)
Cyanobacteria , Microcystis , Microcystis/metabolism , Microcystins/metabolism , Cyanobacteria/metabolism
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(3): 902-906, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37356958

ABSTRACT

Obesity-associated protein (FTO) is an important m6A demethylase that regulates RNA methylation modification and can promote the proliferation of acute myeloid leukemia(AML) cells. FTO regulates the methylation level of AML through multiple cellular signaling pathways such as FTO/RARA/ASB2, FTO/m6A/CEBPA, and PDGFRB/ERK, and participates in the occurrence, development, treatment and prognosis of AML. At present, studies have found that a variety of inhibitors targeting FTO have shown good anti-leukemia effects, and the study of FTO will provide new ideas for the treatment of AML. This review focus on the mechanism of action of FTO in AML and the research progress of FTO inhibitors in AML.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Methylation , Leukemia, Myeloid, Acute/genetics , Prognosis , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
15.
Biotechnol Genet Eng Rev ; : 1-15, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37224058

ABSTRACT

OBJECTIVE: To analyze the genetic test results of 378 patients suspected of thalassemia. METHODS: 378 suspected thalassemia patients in Shaoxing People's Hospital from 2014 to 2020 were selected and venous blood was tested using Gap-PCR and PCR-reversed dot blottin. The distribution of genotypes and other information of gene-positive patients was observed. RESULTS: Thalassemia genes were detected in 222 cases, with an overall detection rate of 58.7%, of which 41.4% were α deletion type, 1.35% were α dot, 52.7% were α thalassemia, and 4.5% were αß complex type. Among the 86 people with provincial household registration, the α-thalassemia gene accounted for 65.1% and the ß-thalassemia gene accounted for 25.6%. Follow-up found that Shaoxing nationality accounted for 53.1% of positive patients, of which ß-thalassemia gene accounted for 72.9% and α-thalassemia gene accounted for 25.4%; other cities in the province accounted for 8.1% of the total. Other provinces and cities accounted for 38.7%, most of which were from Guangxi and Guizhou. Among all positive patients, the most common α-thalassemia genotypes were --sea / αα, --α / αα,--α 3.7 4.2 / αα , --α3.7 / --sea. The most common mutations in ß-thalassemia were IVS-II-654, CD41-42, CD17 and CD14-15. CONCLUSION: The thalassemia gene carrier status was sporadically distributed outside the traditional thalassemia high prevalence areas. The local population in Shaoxing has a high detection rate of thalassemia genes, and the genetic composition is different from the traditional high prevalence area of thalassemia in the south.

16.
Curr Treat Options Oncol ; 24(4): 338-352, 2023 04.
Article in English | MEDLINE | ID: mdl-36877373

ABSTRACT

OPINION STATEMENT: Myeloid sarcoma, a rare malignant tumor characterized by the invasion of extramedullary tissue by immature myeloid cells, commonly occurs concomitantly with acute myeloid leukemia, myelodysplastic syndromes, or myeloproliferative neoplasms. The rarity of myeloid sarcoma poses challenges for diagnosis and treatment. Currently, treatments for myeloid sarcoma remain controversial and primarily follow protocols for acute myeloid leukemia, such as chemotherapy utilizing multi-agent regimens, in addition to radiation therapy and/or surgery. The advancements in next-generation sequencing technology have led to significant progress in the field of molecular genetics, resulting in the identification of both diagnostic and therapeutic targets. The application of targeted therapeutics, such as FMS-like tyrosine kinase 3(FLT3) inhibitors, isocitrate dehydrogenases(IDH) inhibitors, and the B cell lymphoma 2(BCL2) inhibitors, has facilitated the gradual transformation of traditional chemotherapy into targeted precision therapy for acute myeloid leukemia. However, the field of targeted therapy for myeloid sarcoma is relatively under-investigated and not well-described. In this review, we comprehensively summarize the molecular genetic characteristics of myeloid sarcoma and the current application of targeted therapeutics.


Subject(s)
Leukemia, Myeloid, Acute , Sarcoma, Myeloid , Humans , Sarcoma, Myeloid/etiology , Sarcoma, Myeloid/genetics , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/genetics , Mutation , Protein Kinase Inhibitors/therapeutic use
17.
Int J Hematol ; 118(3): 394-399, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36935465

ABSTRACT

Splenic diffuse red pulp small B-cell lymphoma (SDRPL) is a rare B-cell tumor whose genetic characteristics are poorly understood. Here, we introduce the case of a 62-year-old patient with SDRPL who showed progressive elevation of lymphocytes and progressive spleen enlargement. Immunohistochemistry showed that CD20 and CD79a were positive, and the Ki-67 labelling index was approximately 5%, consistent with the pathological features of splenic B-cell lymphoma. Spleen tissue and peripheral blood samples from the patient were sequenced using a next-generation sequencing platform, and mutations possibly were detected in the CXCR4 and TRAF3 genes that may be related to the pathogenesis of the disease. This finding may provide insights into the molecular pathogenesis of SDRPL and assist in molecular diagnosis and targeted therapy for SDRPL.


Subject(s)
Lymphoma, B-Cell , Splenic Neoplasms , Humans , Middle Aged , TNF Receptor-Associated Factor 3/genetics , Splenic Neoplasms/genetics , Splenic Neoplasms/pathology , Lymphoma, B-Cell/pathology , B-Lymphocytes/pathology , Mutation , Receptors, CXCR4/genetics
18.
Acta Biochim Pol ; 70(1): 37-43, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36812496

ABSTRACT

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) is abnormally upregulated in various human cancers. However, the role of MALAT-1 in acute myeloid leukemia (AML) remains unclear. This study investigated the expression and function of MALAT-1 in AML. MTT assay was used to determine cell viability, qRT-PCR was applied to determine the RNA levels. Western blot was performed to detect the protein expression. Flow cytometry was conducted to measure cell apoptosis. RNA pull-down assay was carried out to detect the interaction between MALAT-1 and METTL14. RNA FISH assay was performed to determine the localization of MALAT-1 and METTL14 in AML cells. Our results have revealed the key role of MEEL14 and m6A modification in AML. Besides, MALAT-1 was significantly up-regulated in AML patients. MALAT-1 knockdown inhibited the proliferation, migration and invasion of AML cells, and induced cell apoptosis; additionally, MALAT-1 binding to METTL14 promoted the m6A modification of ZEB1. Besides, ZEB1 overexpression partially reversed the effect of MALAT-1 knockdown on the cellular functions of AML cells. Taken together, MALAT-1 promoted the aggressiveness of AML through regulating m6A modification of ZEB1.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , RNA, Long Noncoding , Humans , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
20.
Environ Res ; 214(Pt 4): 114109, 2022 11.
Article in English | MEDLINE | ID: mdl-35981612

ABSTRACT

The migration of organic matter in salinized lakes was critical in maintaining ecological balance and material circulation process of inland shallow lakes. To clarify the ecological and microbial mechanism of material transport and transformation, the microbial community structure and the characteristics of dissolved organic matter (DOM) in the sediment of Daihai Lake, a typical saline lake at the Yellow River Basin, were explored with three-dimensional excitation and emission matrix fluorescence (3DEEM), parallel factor analysis (PARAFAC) and 16 S rRNA techniques. The correlation between environmental factors, DOM composition and the bacterial community structure were also studied for identifying the key factors of community formation. DOM in the lake demonstrated both terrigenous and endogenous characteristics. Protein-like materials accounted for 74% of the total fluorescence intensity in the sediment, where 1127 species, 671 genera, 468 families, 157 classes, 317 orders, 59 phyla of microorganisms were detected. Among the top 10 abundant taxa of each level, Firmicutes, Actinobacterota, Acidimicrobiia and Alphaproteobacteria had the greatest influence on the composition and structure of DOM (|R| > 0.7, p < 0.01). Microbial metabolism was a key process of transforming sediment organic matter from terrestrial humic-like to protein-like matter, accounting for 81% of total fluorescence signal in saline lake samples, while salinity, temperature, dissolved oxygen and electrical conductivity also had significant impacts during the process (|R|>0.7, p < 0.05). The research provides fundamental data and enlightenment for the improvement of the saline inland lake environment.


Subject(s)
Dissolved Organic Matter , Water Quality , Bacteria/genetics , China , Humans , Lakes/chemistry , Rivers , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...