Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(26): 17197-17208, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952325

ABSTRACT

Potassium ion batteries (PIBs) are a viable alternative to lithium-ion batteries for energy storage. Red phosphorus (RP) has attracted a great deal of interest as an anode for PIBs owing to its cheapness, ideal electrode potential, and high theoretical specific capacity. However, the direct preparation of phosphorus-carbon composites usually results in exposure of the RP to the exterior of the carbon layer, which can lead to the deactivation of the active material and the production of "dead phosphorus". Here, the advantage of the π-π bond conjugated structure and high catalytic activity of metal phthalocyanine (MPc) is used to prepare MPc@RP/C composites as a highly stable anode for PIBs. It is shown that the introduction of MPc greatly improves the uneven distribution of the carbon layer on RP, and thus improves the initial Coulombic efficiency (ICE) of PIBs (the ICE of FePc@RP/C is 75.5% relative to 62.9% of RP/C). The addition of MPc promotes the growth of solid electrolyte interphase with high mechanical strength, improving the cycle stability of PIBs (the discharge-specific capacity of FePc@RP/C is 411.9 mAh g-1 after 100 cycles at 0.05 A g-1). Besides, density functional theory theoretical calculations show that MPc exhibits homogeneous adsorption energies for multiple potassiation products, thereby improving the electrochemical reactivity of RP. The use of organic molecules with high electrocatalytic activity provides a universal approach for designing superior high-capacity, large-volume expansion anodes for PIBs.

2.
Small ; 20(29): e2310997, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38353064

ABSTRACT

Sodium-ion batteries (SIBs) are potential candidates for large energy storage usage because of the natural abundance and cheap sodium. Nevertheless, improving the energy density and cycling steadiness of SIB cathodes remains a challenge. In this work, F-doping Na3Al2/3V4/3(PO4)3(NAVP) microspheres (Na3Al2/3V4/3(PO4)2.9F0.3(NAVPF)) are synthesized via spray drying and investigated as SIB cathodes. XRD and Rietveld refinement reveal expanded lattice parameters for NAVPF compared to the undoped sample, and the successful cation doping into the Na superionic conductor (NASICON) framework improves Na+ diffusion channels. The NAVPF delivers an ultrahigh capacity of 148 mAh g-1 at 100 mA g-1 with 90.8% retention after 200 cycles, enabled by the activation of V2+/V5+ multielectron reaction. Notably, NAVPF delivers an ultrahigh rate performance, with a discharge capacity of 83.6 mAh g-1 at 5000 mA g-1. In situ XRD demonstrates solid-solution reactions occurred during charge-discharge of NAVPF without two-phase reactions, indicating enhanced structural stability after F-doped. The full cell with NAVPF cathode and Na+ preintercalated hard carbon anode shows a large discharge capacity of 100 mAh g-1 at 100 mA g-1 with 80.2% retention after 100 cycles. This anion doping strategy creates a promising SIB cathode candidate for future high-energy-density energy storage applications.

3.
ACS Nano ; 18(6): 5068-5078, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38289162

ABSTRACT

Solid-state batteries based on lithium metal anodes are expected to meet safety challenges while maintaining a high energy density. One major challenge lies in the fast interface degradation between the electrolyte and the lithium metal. Herein, we propose a quasi-3D interphase on a garnet solid-state electrolyte (SSE) by introducing lithiophilic nanotrenches. The nanotrenches created by the lithiophilic nanowire array can induce the superfilling of lithium metal into the nanotrenches, resulting in a low interfacial resistance (4 Ω cm2). Moreover, the embedded lithium metal anode optimizes the lithium deposition/stripping behavior not limited at the Li-SSE interface (∼1-10 nm) but extended into the bulk lithium anode (∼10 µm), realizing a high critical current density of 1.8-2.0 mA cm-2 at room temperature (RT). The embedded lithium metal anode is further applied in Li||LiFePO4 solid-state batteries, demonstrating a high reversible areal capacity of ∼3.0 mAh cm-2 at RT.

SELECTION OF CITATIONS
SEARCH DETAIL