Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 389(2): 208-218, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38453525

ABSTRACT

Renal fibrosis is distinguished by the abnormal deposition of extracellular matrix and progressive loss of nephron function, with a lack of effective treatment options in clinical practice. In this study, we discovered that the Beclin-1-derived peptide MP1 significantly inhibits the abnormal expression of fibrosis and epithelial-mesenchymal transition-related markers, including α-smooth muscle actin, fibronectin, collagen I, matrix metallopeptidase 2, Snail1, and vimentin both in vitro and in vivo. H&E staining was employed to evaluate renal function, while serum creatinine (Scr) and blood urea nitrogen (BUN) were used as main indices to assess pathologic changes in the obstructed kidney. The results demonstrated that daily treatment with MP1 during the 14-day experiment significantly alleviated renal dysfunction and changes in Scr and BUN in mice with unilateral ureteral obstruction. Mechanistic research revealed that MP1 was found to have a significant inhibitory effect on the expression of crucial components involved in both the Wnt/ß-catenin and transforming growth factor (TGF)-ß/Smad pathways, including ß-catenin, C-Myc, cyclin D1, TGF-ß1, and p-Smad/Smad. However, MP1 exhibited no significant impact on either the LC3II/LC3I ratio or P62 levels. These findings indicate that MP1 improves renal physiologic function and mitigates the fibrosis progression by inhibiting the Wnt/ß-catenin pathway. Our study suggests that MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: This study indicated that the Beclin-1-derived peptide MP1 effectively mitigated renal fibrosis induced by unilateral ureteral obstruction through inhibiting the Wnt/ß-catenin pathway and transforming growth factor-ß/Smad pathway, thereby improving renal physiological function. Importantly, unlike other Beclin-1-derived peptides, MP1 exhibited no significant impact on autophagy in normal cells. MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis focusing on Beclin-1 derivatives and Wnt/ß-catenin pathway.


Subject(s)
Kidney Diseases , Prodrugs , Ureteral Obstruction , Animals , Mice , Beclin-1/metabolism , Beclin-1/pharmacology , beta Catenin/metabolism , beta Catenin/pharmacology , Fibrosis , Kidney , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Prodrugs/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism
2.
J Pharmacol Exp Ther ; 386(3): 310-322, 2023 09.
Article in English | MEDLINE | ID: mdl-37419684

ABSTRACT

Renal fibrosis is characterized by the excessive deposition of extracellular matrix that destroys and replaces the functional renal parenchyma, ultimately leading to organ failure. It is a common pathway by which chronic kidney disease can develop into end-stage renal disease, which has high global morbidity and mortality, and there are currently no good therapeutic agents available. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been indicated to be closely related to the occurrence of renal fibrosis, and its specific inhibitory peptide, autocamtide-2-related inhibitory peptide (AIP), was shown to directly bind the active site of CaMKII. In this study, we examined the effect of AIP on the progression of renal fibrosis and its possible mechanism. The results showed that AIP could inhibit the expression of the fibrosis markers fibronectin, collagen I, matrix metalloproteinase 2, and α-smooth muscle actin in vivo and in vitro. Further analysis revealed that AIP could inhibit the expression of various epithelial-to-mesenchymal transformation-related markers, such as vimentin and Snail 1, in vivo and in vitro. Mechanistically, AIP could significantly inhibit the activation of CaMKII, Smad 2, Raf, and extracellular regulated protein kinases (ERK) in vitro and in vivo and reduce the expression of transforming growth factor-ß (TGF-ß) in vivo. These results suggested that AIP could alleviate renal fibrosis by inhibiting CaMKII and blocking activation of the TGF-ß/Smad2 and RAF/ERK pathways. Our study provides a possible drug candidate and demonstrates that CaMKII is a potential pharmacological target for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: We have demonstrated that AIP significantly attenuated transforming growth factor-ß-1-induced fibrogenesis and ameliorated unilateral ureteral obstruction-induced renal fibrosis through the CaMKII/TGF-ß/Smad and CaMKII/RAF/ERK signaling pathways in vitro and in vivo. Our study provides a possible drug candidate and demonstrates that CaMKII can be a potential pharmacological target for the treatment of renal fibrosis.


Subject(s)
Renal Insufficiency, Chronic , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/pharmacology , MAP Kinase Signaling System , Kidney , Transforming Growth Factor beta1/metabolism , Renal Insufficiency, Chronic/metabolism , Fibrosis , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology , Epithelial-Mesenchymal Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...