Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Genet ; 56(5): 1018-1031, 2024 May.
Article in English | MEDLINE | ID: mdl-38693345

ABSTRACT

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.


Subject(s)
Embryophyta , Evolution, Molecular , Phylogeny , Signal Transduction , Signal Transduction/genetics , Embryophyta/genetics , Gene Regulatory Networks , Genome/genetics , Genome, Plant
2.
Fam Pract ; 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36866698

ABSTRACT

BACKGROUND: Integrated care has been proven to be effective among stroke survivors. However, in China, these services mainly focus on connecting the healthcare system (acute, primary medical, and skilled) at the individual level. Closer health and social care integration is a new concept. OBJECTIVE: This study aimed to compare health-related outcomes 6 months after the implementation of the 2 integrated care models. METHODS: It was a 6-month follow-up of an open, prospectively study comparing the outcomes of a model of integrated health and social care (IHSC) versus a usual integrated healthcare (IHC) model. Outcomes were measured by Short-Form Health Survey-36 (SF-36), Modified Barthel Index (MBI), and Caregiver Strain Index (CSI) at 3 and 6 months, respectively. RESULTS: There were no statistically significant differences in MBI scores between patients in the 2 models either after 3 months or at the end of intervention. The same trend was not seen in Physical Components Summary, an integral component of SF-36. Patients in IHSC model scored statistically significant higher points in Mental Components Summary, another integral part of SF-36 than patients in IHC model after 6 months. Average scores of CSI were statistically significant lower for IHSC model than for IHC model after 6 months. CONCLUSION: The findings suggest the need to improve the scales of integration and recognize the vital role played by social care services when designing or improving an integrated care for older people with stroke.

3.
bioRxiv ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36778228

ABSTRACT

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

4.
Hortic Res ; 9: uhac213, 2022.
Article in English | MEDLINE | ID: mdl-36483087

ABSTRACT

Vegetables are an indispensable part of the daily diet of humans. Therefore, it is vital to systematically study the genomic data of vegetables and build a platform for data sharing and analysis. In this study, a comprehensive platform for vegetables with a user-friendly Web interface-The Vegetable Information Resource (TVIR, http://tvir.bio2db.com)-was built based on the genomes of 59 vegetables. TVIR database contains numerous important functional genes, including 5215 auxin genes, 2437 anthocyanin genes, 15 002 flowering genes, 79 830 resistance genes, and 2639 glucosinolate genes of 59 vegetables. In addition, 2597 N6-methyladenosine (m6A) genes were identified, including 513 writers, 1058 erasers, and 1026 readers. A total of 2 101 501 specific clustered regularly interspaced short palindromic repeat (CRISPR) guide sequences and 17 377 miRNAs were detected and deposited in TVIR database. Information on gene synteny, duplication, and orthologs is also provided for 59 vegetable species. TVIR database contains 2 346 850 gene annotations by the Swiss-Prot, TrEMBL, Gene Ontology (GO), Pfam, and Non-redundant (Nr) databases. Synteny, Primer Design, Blast, and JBrowse tools are provided to facilitate users in conducting comparative genomic analyses. This is the first large-scale collection of vegetable genomic data and bioinformatic analysis. All genome and gene sequences, annotations, and bioinformatic results can be easily downloaded from TVIR. Furthermore, transcriptome data of 98 vegetables have been collected and collated, and can be searched by species, tissues, or different growth stages. TVIR is expected to become a key hub for vegetable research globally. The database will be updated with newly assembled vegetable genomes and comparative genomic studies in the future.

5.
Comput Struct Biotechnol J ; 19: 5678-5687, 2021.
Article in English | MEDLINE | ID: mdl-34765088

ABSTRACT

Heavy metal pollutions in the soils are increasingly threatening the global crop and food production. Using plant associated bacteria to remediate heavy metal contamination is a promising approach. We have isolated a cadmium (Cd) resistant Enterococcus faecium strain CX 2-6 from a heavy metal contaminated farmland. We have shown that: (i) CX 2-6 can tolerate cadmium (Cd) with a slower growth rate; (ii) The CX 2-6 complete genome is fully assembled using PacBio long reads; (iii) Differential expression analysis found 47% of CX 2-6 genes are significantly affected by Cd treatment and form three gene groups with distinct expression profiles; (iv) Differentially expressed genes (DEGs) form physically linked gene clusters in the CX 2-6 genome, and one of the gene clusters corresponds to a prophage that is unique to CX 2-6 and is strongly activated when Cd concentration is higher; (v) A majority of DEGs responding to Cd treatment are present in the core genome; and (vi) 55 noncoding RNA genes are identified and 49 of them are DEGs responding to cadmium stress. Our pan-genome analysis and comparative RNA-seq data analysis has significantly improved our understanding of the metabolic reprogramming of E. faecium CX 2-6 under Cd stress.

6.
iScience ; 24(3): 102192, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33718841

ABSTRACT

Phagocytosis and autophagy play critical roles in immune defense. The human fungal pathogen Cryptococcus neoformans (Cn) subverts host autophagy-initiation complex (AIC)-related proteins, to promote its phagocytosis and intracellular parasitism of host cells. The mechanisms by which the pathogen engages host AIC-related proteins remain obscure. Here, we show that the recruitment of host AIC proteins to forming phagosomes is dependent upon the activity of CD44, a host cell surface receptor that engages fungal hyaluronic acid (HA). This interaction elevates intracellular Ca2+ concentrations and activates CaMKKß and its downstream target AMPKα, which results in activation of ULK1 and the recruitment of AIC components. Moreover, we demonstrate that HA-coated beads efficiently recruit AIC components to phagosomes and CD44 interacts with AIC components. Taken together, these findings show that fungal HA plays a critical role in directing the internalization and productive intracellular membrane trafficking of a fungal pathogen of global importance.

7.
Front Plant Sci ; 12: 610381, 2021.
Article in English | MEDLINE | ID: mdl-33643345

ABSTRACT

Zygnematophyceae green algae (ZGA) have been shown to be the closest relatives of land plants. Three nuclear genomes (Spirogloea muscicola, Mesotaenium endlicherianum, and Penium margaritaceum) of ZGA have been recently published, and more genomes are underway. Here we analyzed two Zygnema circumcarinatum strains SAG 698-1a (mating +) and SAG 698-1b (mating -) and found distinct cell sizes and other morphological differences. The molecular identities of the two strains were further investigated by sequencing their 18S rRNA, psaA and rbcL genes. These marker genes of SAG 698-1a were surprisingly much more similar to Z. cylindricum (SAG 698-2) than to SAG 698-1b. Phylogenies of these marker genes also showed that SAG 698-1a and SAG 698-1b were well separated into two different Zygnema clades, where SAG 698-1a was clustered with Z. cylindricum, while SAG 698-1b was clustered with Z. tunetanum. Additionally, physiological parameters like ETRmax values differed between SAG 698-1a and SAG 698-1b after 2 months of cultivation. The de-epoxidation state (DEPS) of the xanthophyll cycle pigments also showed significant differences. Surprisingly, the two strains could not conjugate, and significantly differed in the thickness of the mucilage layer. Additionally, ZGA cell walls are highly enriched with sticky and acidic polysaccharides, and therefore the widely used plant nuclear extraction protocols do not work well in ZGA. Here, we also report a fast and simple method, by mechanical chopping, for efficient nuclear extraction in the two SAG strains. More importantly, the extracted nuclei were further used for nuclear genome size estimation of the two SAG strains by flow cytometry (FC). To confirm the FC result, we have also used other experimental methods for nuclear genome size estimation of the two strains. Interestingly, the two strains were found to have very distinct nuclear genome sizes (313.2 ± 2.0 Mb in SAG 698-1a vs. 63.5 ± 0.5 Mb in SAG 698-1b). Our multiple lines of evidence strongly indicate that SAG 698-1a possibly had been confused with SAG 698-2 prior to 2005, and most likely represents Z. cylindricum or a closely related species.

8.
Hortic Res ; 8(1): 48, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33642591

ABSTRACT

Long noncoding RNAs (lncRNAs) are widely present in different species and play critical roles in response to abiotic stresses. However, the functions of lncRNAs in Chinese cabbage under heat stress remain unknown. Here, we first conducted a global comparative analysis of 247,242 lncRNAs among 37 species. The results indicated that lncRNAs were poorly conserved among different species, and only 960 lncRNAs were homologous to 524 miRNA precursors. We then carried out lncRNA sequencing for a genome-wide analysis of lncRNAs and their target genes in Chinese cabbage at different stages of heat treatment. In total, 18,253 lncRNAs were identified, of which 1229 differentially expressed (DE) lncRNAs were characterized as being heat-responsive. The ceRNA network revealed that 38 lncRNAs, 16 miRNAs, and 167 mRNAs were involved in the heat response in Chinese cabbage. Combined analysis of the cis- and trans-regulated genes indicated that the targets of DE lncRNAs were significantly enriched in the "protein processing in endoplasmic reticulum" and "plant hormone signal transduction" pathways. Furthermore, the majority of HSP and PYL genes involved in these two pathways exhibited similar expression patterns and responded to heat stress rapidly. Based on the networks of DE lncRNA-mRNAs, 29 and 22 lncRNAs were found to interact with HSP and PYL genes, respectively. Finally, the expression of several critical lncRNAs and their targets was verified by qRT-PCR. Overall, we conducted a comparative analysis of lncRNAs among 37 species and performed a comprehensive analysis of lncRNAs in Chinese cabbage. Our findings expand the knowledge of lncRNAs involved in the heat stress response in Chinese cabbage, and the identified lncRNAs provide an abundance of resources for future comparative and functional studies.

9.
Nucleic Acids Res ; 49(D1): D523-D528, 2021 01 08.
Article in English | MEDLINE | ID: mdl-32941621

ABSTRACT

PULs (polysaccharide utilization loci) are discrete gene clusters of CAZymes (Carbohydrate Active EnZymes) and other genes that work together to digest and utilize carbohydrate substrates. While PULs have been extensively characterized in Bacteroidetes, there exist PULs from other bacterial phyla, as well as archaea and metagenomes, that remain to be catalogued in a database for efficient retrieval. We have developed an online database dbCAN-PUL (http://bcb.unl.edu/dbCAN_PUL/) to display experimentally verified CAZyme-containing PULs from literature with pertinent metadata, sequences, and annotation. Compared to other online CAZyme and PUL resources, dbCAN-PUL has the following new features: (i) Batch download of PUL data by target substrate, species/genome, genus, or experimental characterization method; (ii) Annotation for each PUL that displays associated metadata such as substrate(s), experimental characterization method(s) and protein sequence information, (iii) Links to external annotation pages for CAZymes (CAZy), transporters (UniProt) and other genes, (iv) Display of homologous gene clusters in GenBank sequences via integrated MultiGeneBlast tool and (v) An integrated BLASTX service available for users to query their sequences against PUL proteins in dbCAN-PUL. With these features, dbCAN-PUL will be an important repository for CAZyme and PUL research, complementing our other web servers and databases (dbCAN2, dbCAN-seq).


Subject(s)
Bacteroidetes/genetics , Databases, Genetic , Enzymes/metabolism , Genetic Loci , Multigene Family , Polysaccharides/metabolism , Molecular Sequence Annotation , Substrate Specificity
10.
J Exp Bot ; 71(11): 3361-3373, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32206790

ABSTRACT

The complete chloroplast and mitochondrial genomes of Charophyta have shed new light on land plant terrestrialization. Here, we report the organellar genomes of the Zygnema circumcarinatum strain UTEX 1559, and a comparative genomics investigation of 33 plastomes and 18 mitogenomes of Chlorophyta, Charophyta (including UTEX 1559 and its conspecific relative SAG 698-1a), and Embryophyta. Gene presence/absence was determined across these plastomes and mitogenomes. A comparison between the plastomes of UTEX 1559 (157 548 bp) and SAG 698-1a (165 372 bp) revealed very similar gene contents, but substantial genome rearrangements. Surprisingly, the two plastomes share only 85.69% nucleotide sequence identity. The UTEX 1559 mitogenome size is 215 954 bp, the largest among all sequenced Charophyta. Interestingly, this large mitogenome contains a 50 kb region without homology to any other organellar genomes, which is flanked by two 86 bp direct repeats and contains 15 ORFs. These ORFs have significant homology to proteins from bacteria and plants with functions such as primase, RNA polymerase, and DNA polymerase. We conclude that (i) the previously published SAG 698-1a plastome is probably from a different Zygnema species, and (ii) the 50 kb region in the UTEX 1559 mitogenome might be recently acquired as a mobile element.


Subject(s)
Embryophyta , Genome, Chloroplast , Genome, Mitochondrial , Base Sequence , Chloroplasts , Evolution, Molecular , Genome, Plant , Phylogeny
11.
J Exp Bot ; 71(11): 3270-3278, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32107542

ABSTRACT

The present review summarizes the effects of desiccation in streptophyte green algae, as numerous experimental studies have been performed over the past decade particularly in the early branching streptophyte Klebsormidium sp. and the late branching Zygnema circumcarinatum. The latter genus gives its name to the Zygenmatophyceae, the sister group to land plants. For both organisms, transcriptomic investigations of desiccation stress are available, and illustrate a high variability in the stress response depending on the conditions and the strains used. However, overall, the responses of both organisms to desiccation stress are very similar to that of land plants. We highlight the evolution of two highly regulated protein families, the late embryogenesis abundant (LEA) proteins and the major intrinsic protein (MIP) family. Chlorophytes and streptophytes encode LEA4 and LEA5, while LEA2 have so far only been found in streptophyte algae, indicating an evolutionary origin in this group. Within the MIP family, a high transcriptomic regulation of a tonoplast intrinsic protein (TIP) has been found for the first time outside the embryophytes in Z. circumcarinatum. The MIP family became more complex on the way to terrestrialization but simplified afterwards. These observations suggest a key role for water transport proteins in desiccation tolerance of streptophytes.


Subject(s)
Chlorophyta , Embryophyta , Streptophyta , Chlorophyta/genetics , Desiccation , Embryonic Development , Phylogeny , Streptophyta/genetics
12.
Front Genet ; 11: 590535, 2020.
Article in English | MEDLINE | ID: mdl-33519895

ABSTRACT

The family Apiaceae includes many important vegetables and medicinal plants. Auxin response factors (ARFs) play critical roles in regulating plant growth and development. Here, we performed a comprehensive analysis of the ARF gene family in three Apiaceae species, celery, coriander, and carrot, and compared the results with the ARF gene family of lettuce, Arabidopsis, and grape. We identified 156 ARF genes in all six species and 89 genes in the three Apiaceae species, including 28, 34, and 27 in celery, coriander, and carrot, respectively. The paralogous gene number in coriander was far greater than that in carrot and celery. Our analysis revealed that ARF genes of the three Apiaceae species in 34 branches of the phylogenetic tree underwent significant positive selection. Additionally, our findings indicated that whole-genome duplication played an important role in ARF gene family expansion. Coriander contained a greater number of ARF genes than celery and carrot because of more gene duplications and less gene losses. We also analyzed the expression of ARF genes in three tissues by RNA-seq and verified the results by quantitative real-time PCR. Furthermore, we found that several paralogous genes exhibited divergent expression patterns. Overall, this study provides a valuable resource for exploring how ARF family genes regulate plant growth and development in other plants. Since this is the first report of the ARF gene family in Apiaceae, our results will serve as a guide for comparative and functional analyses of ARF and other gene families in Apiaceae.

13.
Article in English | MEDLINE | ID: mdl-29732320

ABSTRACT

Brucella spp. are intracellular vacuolar pathogens that causes brucellosis, a worldwide zoonosis of profound importance. We previously demonstrated that the activity of host unfolded protein response (UPR) sensor IRE1α (inositol-requiring enzyme 1) and ER-associated autophagy confer susceptibility to Brucella melitensis and Brucella abortus intracellular replication. However, the mechanism by which host IRE1α regulates the pathogen intracellular lifestyle remains elusive. In this study, by employing a diverse array of molecular approaches, including biochemical analyses, fluorescence microscopy imaging, and infection assays using primary cells derived from Ern1 (encoding IRE1) conditional knockout mice, we address this gap in our understanding by demonstrating that a novel IRE1α to ULK1, an important component for autophagy initiation, signaling axis confers susceptibility to Brucella intracellular parasitism. Importantly, deletion or inactivation of key signaling components along this axis, including IRE1α, BAK/BAX, ASK1, and JNK as well as components of the host autophagy system ULK1, Atg9a, and Beclin 1, resulted in striking disruption of Brucella intracellular trafficking and replication. Host kinases in the IRE1α-ULK1 axis, including IRE1α, ASK1, JNK1, and/or AMPKα as well as ULK1, were also coordinately phosphorylated in an IRE1α-dependent fashion upon the pathogen infection. Taken together, our findings demonstrate that the IRE1α-ULK1 signaling axis is subverted by the bacterium to promote intracellular parasitism, and provide new insight into our understanding of the molecular mechanisms of intracellular lifestyle of Brucella.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Brucella melitensis/pathogenicity , Brucellosis/pathology , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Autophagy/physiology , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Proteins/genetics , Beclin-1/genetics , Brucellosis/microbiology , Cell Line , Drosophila melanogaster , Endoribonucleases/genetics , Host-Pathogen Interactions/physiology , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Kinase Kinase 5/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Phosphorylation , Protein Serine-Threonine Kinases/genetics , RAW 264.7 Cells , Signal Transduction/physiology , Unfolded Protein Response/physiology , Vesicular Transport Proteins/genetics , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
14.
Cell Host Microbe ; 21(5): 637-649.e6, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28494245

ABSTRACT

Cryptococcus neoformans (Cn) is a deadly fungal pathogen whose intracellular lifestyle is important for virulence. Host mechanisms controlling fungal phagocytosis and replication remain obscure. Here, we perform a global phosphoproteomic analysis of the host response to Cryptococcus infection. Our analysis reveals numerous and diverse host proteins that are differentially phosphorylated following fungal ingestion by macrophages, thereby indicating global reprogramming of host kinase signaling. Notably, phagocytosis of the pathogen activates the host autophagy initiation complex (AIC) and the upstream regulatory components LKB1 and AMPKα, which regulate autophagy induction through their kinase activities. Deletion of Prkaa1, the gene encoding AMPKα1, in monocytes results in resistance to fungal colonization of mice. Finally, the recruitment of AIC components to nascent Cryptococcus-containing vacuoles (CnCVs) regulates the intracellular trafficking and replication of the pathogen. These findings demonstrate that host AIC regulatory networks confer susceptibility to infection and establish a proteomic resource for elucidating host mechanisms that regulate fungal intracellular parasitism.


Subject(s)
Cryptococcosis/immunology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , Host-Pathogen Interactions/immunology , Signal Transduction/physiology , Virulence/genetics , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Autophagy/physiology , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Biological Transport/physiology , Cell Line , Coxiella burnetii/pathogenicity , Cryptococcosis/microbiology , Cryptococcus neoformans/growth & development , Cryptococcus neoformans/metabolism , Disease Models, Animal , Female , Fungal Proteins/genetics , Fungal Proteins/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Phagocytosis , Protein Serine-Threonine Kinases/metabolism , Proteomics , RAW 264.7 Cells , Vacuoles/microbiology , Virulence/physiology
15.
Mol Microbiol ; 105(1): 1-24, 2017 07.
Article in English | MEDLINE | ID: mdl-28370587

ABSTRACT

The model fungus Aspergillus nidulans synthesizes numerous secondary metabolites, including sterigmatocystin (ST). The production of this toxin is positively controlled by the global regulator veA. In the absence of veA (ΔveA), ST biosynthesis is blocked. Previously, we performed random mutagenesis in a ΔveA strain and identified revertant mutants able to synthesize ST, among them RM1. Complementation of RM1 with a genomic library revealed that the mutation occurred in a gene designated as cpsA. While in the ΔveA genetic background cpsA deletion restores ST production, in a veA wild-type background absence of cpsA reduces and delays ST biosynthesis decreasing the expression of ST genes. Furthermore, cpsA is also necessary for the production of other secondary metabolites, including penicillin, affecting the expression of PN genes. In addition, cpsA is necessary for normal asexual and sexual development. Chemical and microscopy analyses revealed that CpsA is found in cytoplasmic vesicles and it is required for normal cell wall composition and integrity, affecting adhesion capacity and oxidative stress sensitivity. The conservation of cpsA in Ascomycetes suggests that cpsA homologs might have similar roles in other fungal species.


Subject(s)
Aspergillus nidulans/metabolism , Carboxypeptidases/metabolism , Amino Acid Sequence , Ascomycota/metabolism , Aspergillus nidulans/genetics , Cell Wall/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/genetics , Morphogenesis , Mutagenesis , Mutation , Mycotoxins/biosynthesis , Mycotoxins/metabolism , Spores, Fungal/growth & development , Sterigmatocystin/biosynthesis
16.
PLoS Genet ; 11(3): e1005096, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25786130

ABSTRACT

Filamentous fungi produce diverse secondary metabolites (SMs) essential to their ecology and adaptation. Although each SM is typically produced by only a handful of species, global SM production is governed by widely conserved transcriptional regulators in conjunction with other cellular processes, such as development. We examined the interplay between the taxonomic narrowness of SM distribution and the broad conservation of global regulation of SM and development in Aspergillus, a diverse fungal genus whose members produce well-known SMs such as penicillin and gliotoxin. Evolutionary analysis of the 2,124 genes comprising the 262 SM pathways in four Aspergillus species showed that most SM pathways were species-specific, that the number of SM gene orthologs was significantly lower than that of orthologs in primary metabolism, and that the few conserved SM orthologs typically belonged to non-homologous SM pathways. RNA sequencing of two master transcriptional regulators of SM and development, veA and mtfA, showed that the effects of deletion of each gene, especially veA, on SM pathway regulation were similar in A. fumigatus and A. nidulans, even though the underlying genes and pathways regulated in each species differed. In contrast, examination of the role of these two regulators in development, where 94% of the underlying genes are conserved in both species showed that whereas the role of veA is conserved, mtfA regulates development in the homothallic A. nidulans but not in the heterothallic A. fumigatus. Thus, the regulation of these highly conserved developmental genes is divergent, whereas-despite minimal conservation of target genes and pathways-the global regulation of SM production is largely conserved. We suggest that the evolution of the transcriptional regulation of secondary metabolism in Aspergillus represents a novel type of regulatory circuit rewiring and hypothesize that it has been largely driven by the dramatic turnover of the target genes involved in the process.


Subject(s)
Aspergillus/genetics , Aspergillus/metabolism , Biological Evolution , Metabolic Networks and Pathways , Aspergillus/classification , Evolution, Molecular , Genome, Fungal
17.
PLoS One ; 8(9): e74122, 2013.
Article in English | MEDLINE | ID: mdl-24066102

ABSTRACT

Secondary metabolism in the model fungus Aspergillus nidulans is controlled by the conserved global regulator VeA, which also governs morphological differentiation. Among the secondary metabolites regulated by VeA is the mycotoxin sterigmatocystin (ST). The presence of VeA is necessary for the biosynthesis of this carcinogenic compound. We identified a revertant mutant able to synthesize ST intermediates in the absence of VeA. The point mutation occurred at the coding region of a gene encoding a novel putative C2H2 zinc finger domain transcription factor that we denominated mtfA. The A. nidulans mtfA gene product localizes at nuclei independently of the illumination regime. Deletion of the mtfA gene restores mycotoxin biosynthesis in the absence of veA, but drastically reduced mycotoxin production when mtfA gene expression was altered, by deletion or overexpression, in A. nidulans strains with a veA wild-type allele. Our study revealed that mtfA regulates ST production by affecting the expression of the specific ST gene cluster activator aflR. Importantly, mtfA is also a regulator of other secondary metabolism gene clusters, such as genes responsible for the synthesis of terrequinone and penicillin. As in the case of ST, deletion or overexpression of mtfA was also detrimental for the expression of terrequinone genes. Deletion of mtfA also decreased the expression of the genes in the penicillin gene cluster, reducing penicillin production. However, in this case, over-expression of mtfA enhanced the transcription of penicillin genes, increasing penicillin production more than 5 fold with respect to the control. Importantly, in addition to its effect on secondary metabolism, mtfA also affects asexual and sexual development in A. nidulans. Deletion of mtfA results in a reduction of conidiation and sexual stage. We found mtfA putative orthologs conserved in other fungal species.


Subject(s)
Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Transcription Factors/metabolism , Aspergillus nidulans/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Gene Expression Regulation, Fungal/physiology , Transcription Factors/genetics
18.
Pestic Biochem Physiol ; 107(1): 18-24, 2013 Sep.
Article in English | MEDLINE | ID: mdl-25149230

ABSTRACT

Brucea javanica (L.) Merr. is a medicine plant distributed widely throughout Asia where its bitter fruits have been used traditionally in medicine for treating various ailments and controlling some pests. In recent years, concerns over the potential impact of synthetic pesticides on human health and environment have now become more pressing to develop environmentally friendly pesticides. In this paper, brusatol, a quassinoid, was isolated from the fruit of B. javanica, and identified using X-ray crystallographic analysis. Results showed that brusatol has potent contact toxicity (LD50, 2.91 µg/larva, 72 h) and anfieedant activity (AFC50, 17.4 mg/L, 48 h) against the third-instar larvae of Spodoptera exigua. Brusatol demonstrated cytotoxic effects to the tested insect cell lines, IOZCAS-Spex-II and Sf21, in a time- and dose-dependent manner. After brusatol treatment, apoptotic cell death with the DNA fragmentation, activation of caspase-3 and release of cytochrome c was preliminarily observed in both IOZCAS-Spex-II and Sf21. These results indicated the existence of apoptotic death with the mitochondrial-dependent pathway induced by brusatol in Sf21 and IOZCAS-Spex-II cell lines. Our studies will provide important knowledge to understand mechanisms of action of brusatol and to develop brusatol and its derivatives as insecticides.


Subject(s)
Brucea , Insecticides/pharmacology , Quassins/pharmacology , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytochromes c/metabolism , DNA Fragmentation , Feeding Behavior/drug effects , Fruit , Insecta , Insecticides/chemistry , Insecticides/isolation & purification , Insecticides/toxicity , Larva/drug effects , Larva/physiology , Molecular Structure , Quassins/chemistry , Quassins/isolation & purification , Quassins/toxicity , Seeds/chemistry
19.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 4): o854-5, 2010 Mar 17.
Article in English | MEDLINE | ID: mdl-21580678

ABSTRACT

The title compound, C(26)H(34)O(11), known as bruceine A, is a natural quassinoid extracted from the dried fruits of Brucea javanica. Its structure consists of five fused rings including an oxygen-containing heterocyclic ring and a lactone ring. Two intra-molecular O-H⋯O links help to establish the mol-ecular conformation. In the crystal, O-H⋯O hydrogen bonds connect the mol-ecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...