Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 247: 108093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401509

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is a progressive arrhythmia that significantly affects a patient's quality of life. The 4S-AF scheme is clinically recommended for AF management; however, the evaluation process is complex and time-consuming. This renders its promotion in primary medical institutions challenging. This retrospective study aimed to simplify the evaluation process and present an objective assessment model for AF gradation. METHODS: In total, 189 12-lead electrocardiogram (ECG) recordings from 64 patients were included in this study. The data were annotated into two groups (mild and severe) according to the 4S-AF scheme. Using a preprocessed ECG during the sinus rhythm (SR), we obtained a synthesized vectorcardiogram (VCG). Subsequently, various features were calculated from both signals, and age, sex, and medical history were included as baseline characteristics. Different machine learning models, including support vector machines, random forests (RF), and logistic regression, were finally tested with a combination of feature selection techniques. RESULTS: The proposed method demonstrated excellent performance in the classification of AF gradation. With an optimized feature set of VCG and baseline features, the RF model achieved accuracy, sensitivity, and specificity of 83.02 %, 80.56 %, and 88.24 %, respectively, under the inter-patient paradigm. CONCLUSION: Our results demonstrate the value of physiological signals in AF gradation evaluation, and VCG signals were effective in identifying mild and severe AF. Considering its low computational complexity and high assessment performance, the proposed model is expected to serve as a useful prognostic tool for clinical AF management.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/diagnosis , Retrospective Studies , Quality of Life , Electrocardiography/methods , Support Vector Machine
2.
J Interv Card Electrophysiol ; 67(3): 457-470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37097585

ABSTRACT

BACKGROUND: Premature ventricular contraction (PVC) is a type of cardiac arrhythmia that originates from ectopic pacemaker in the ventricles. The localization of the origin of PVC is essential for successful catheter ablation. However, most studies on non-invasive PVC localization focus on elaborate localization in specific regions of the ventricle. This study aims to propose a machine learning algorithm based on 12-lead electrocardiogram (ECG) data that can improve the accuracy of PVC localization in the whole ventricle. METHODS: We collected 12-lead ECG data from 249 patients with spontaneous or pacing-induced PVCs. The ventricle was divided into 11 segments. In this paper, we propose a machine learning method consisting of two consecutive classification steps. In the first classification step, each PVC beat was labeled to one of the 11 ventricular segments using six features, including a newly proposed morphological feature called "Peak_index." Four machine learning methods were tested for comparative multi-classification performance and the best classifier result was kept to the next step. In the second classification step, a binary classifier was trained using a smaller combination of features to further differentiate segments that are easily confused. RESULTS: The Peak_index as a proposed new classification feature combined with other features is suitable for whole ventricle classification by machine learning methods. The test accuracy of the first classification reached 75.87%. It is shown that a second classification for confusable categories can improve the classification results. After the second classification, the test accuracy reached 76.84%, and when a sample classified into adjacent segments was considered correct, the test "rank accuracy" was improved to 93.49%. The binary classification corrected 10% of the confused samples. CONCLUSION: This paper proposes a "two-step classification" method to localize the origin of PVC beats into the 11 regions of the ventricle using non-invasive 12-lead ECG. It is expected to be a promising technique to be used in clinical settings to help guide ablation procedures.


Subject(s)
Catheter Ablation , Ventricular Premature Complexes , Humans , Ventricular Premature Complexes/diagnosis , Ventricular Premature Complexes/surgery , Electrocardiography/methods , Heart Ventricles , Algorithms
3.
Front Physiol ; 13: 1030307, 2022.
Article in English | MEDLINE | ID: mdl-36425294

ABSTRACT

Catheter ablation has become an important treatment for atrial fibrillation (AF), but its recurrence rate is still high. The aim of this study was to predict AF recurrence using a three-dimensional (3D) network model based on body-surface potential mapping signals (BSPMs). BSPMs were recorded with a 128-lead vest in 14 persistent AF patients before undergoing catheter ablation (Maze-IV). The torso geometry was acquired and meshed by point cloud technology, and the BSPM was interpolated into the torso geometry by the inverse distance weighted (IDW) method to generate the isopotential map. Experiments show that the isopotential map of BSPMs can reflect the propagation of the electrical wavefronts. The 3D isopotential sequence map was established by combining the spatial-temporal information of the isopotential map; a 3D convolutional neural network (3D-CNN) model with temporal attention was established to predict AF recurrence. Our study proposes a novel attention block that focuses the characteristics of atrial activations to improve sampling accuracy. In our experiment, accuracy (ACC) in the intra-patient evaluation for predicting the recurrence of AF was 99.38%. In the inter-patient evaluation, ACC of 3D-CNN was 81.48%, and the area under the curve (AUC) was 0.88. It can be concluded that the dynamic rendering of multiple isopotential maps can not only comprehensively display the conduction of cardiac electrical activity on the body surface but also successfully predict the recurrence of AF after CA by using 3D isopotential sequence maps.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1908-1912, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946271

ABSTRACT

Atrial fibrillation (AF) is one of the most common arrhythmias. The automatic AF detection is of great clinical significance but at the same time it remains a big problem to researchers. In this study, a novel deep learning method to detect AF was proposed. For a 10 s length single lead electrocardiogram (ECG) signal, the continuous wavelet transform (CWT) was used to obtain the wavelet coefficient matrix, and then a convolutional neural network (CNN) with a specific architecture was trained to discriminate the rhythm of the signal. The ECG data in multiple databases were divided into 4 classes according to the rhythm annotation: normal sinus rhythm (NSR), atrial fibrillation (AF), other types of arrhythmia except AF (OTHER), and noise signal (NOISE). The method was evaluated using three different wavelet bases. The experiment showed promising results when using a Morlet wavelet, with an overall accuracy of 97.56%, an average sensitivity of 97.56%, an average specificity of 99.19%. Besides, the area under curve (AUC) value is 0.9983, which showed that the proposed method was effective for detecting AF.


Subject(s)
Atrial Fibrillation/diagnosis , Deep Learning , Electrocardiography , Neural Networks, Computer , Wavelet Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL