Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Nat Commun ; 15(1): 634, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245504

ABSTRACT

Hydrogen-Bonded organic frameworks (HOFs) are a type of emerging porous materials. At present, little research has been conducted on their solution state. This work demonstrates that HOFs fragment into small particles while maintaining their original assemblies upon dispersing in solvents, as confirmed by Cryo-electron microscopy coupled with 3D electron diffraction technology. 1D and 2D-Nuclear Magnetic Resonance (NMR) and zeta potential analyses indicate the HOF-based colloid solution and the isolated molecular solution have significant differences in intermolecular interactions and aggregation behavior. Such unique solution processibility allows for fabricating diverse continuous HOF membranes with high crystallinity and porosity through solution-casting approach on various substrates. Among them, HOF-BTB@AAO membranes show high C3H6 permeance (1.979 × 10-7 mol·s-1·m-2·Pa-1) and excellent separation performance toward C3H6 and C3H8 (SF = 14). This continuous membrane presents a green, low-cost, and efficient separation technology with potential applications in petroleum cracking and purification.

2.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5304-5314, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114120

ABSTRACT

This study aims to observe the effects of diosgenin on the expression of mammalian target of rapamycin(mTOR), sterol regulatory element-binding protein-1c(SREBP-1c), heat shock protein 60(HSP60), medium-chain acyl-CoA dehydrogenase(MCAD), and short-chain acyl-CoA dehydrogenase(SCAD) in the liver tissue of the rat model of non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin in alleviating NAFLD. Forty male SD rats were randomized into five groups: a control group, a model group, low-(150 mg·kg~(-1)·d~(-1)) and high-dose(300 mg·kg~(-1)·d~(-1)) diosgenin groups, and a simvastatin(4 mg·kg~(-1)·d~(-1)) group. The rats in the control group were fed with a normal diet, while those in the other four groups were fed with a high-fat diet. After feeding for 8 weeks, the body weight of rats in the high-fat diet groups increased significantly. After that, the rats were administrated with the corresponding dose of diosgenin or simvastatin by gavage every day for 8 weeks. The levels of triglyceride(TG), total cholesterol(TC), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were determined by the biochemical method. The levels of TG and TC in the liver were measured by the enzyme method. Oil-red O staining was employed to detect the lipid accumulation, and hematoxylin-eosin(HE) staining to detect the pathological changes in the liver tissue. The mRNA and protein levels of mTOR, SREBP-1c, HSP60, MCAD, and SCAD in the liver tissue of rats were determined by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. Compared with the control group, the model group showed increased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lipid deposition in the liver, obvious hepatic steatosis, up-regulated mRNA and protein expression levels of mTOR and SREBP-1c, and down-regulated mRNA and protein expression levels of HSP60, MCAD, and SCAD. Compared with the model group, the rats in each treatment group showed obviously decreased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lessened lipid deposition in the liver, ameliorated hepatic steatosis, down-regulated mRNA and protein le-vels of mTOR and SREBP-1c, and up-regulated mRNA and protein levels of HSP60, MCAD, and SCAD. The high-dose diosgenin outperformed the low-dose diosgenin and simvastatin. Diosgenin may prevent and treat NAFLD by inhibiting the expression of mTOR and SREBP-1c and promoting the expression of HSP60, MCAD, and SCAD to reduce lipid synthesis, improving mitochondrial function, and promoting fatty acid ß oxidation in the liver.


Subject(s)
Diosgenin , Non-alcoholic Fatty Liver Disease , Rats , Male , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Diet, High-Fat/adverse effects , Diosgenin/metabolism , Chaperonin 60/metabolism , Chaperonin 60/pharmacology , Chaperonin 60/therapeutic use , Rats, Sprague-Dawley , Liver , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Triglycerides , RNA, Messenger/metabolism , Simvastatin/metabolism , Simvastatin/pharmacology , Simvastatin/therapeutic use , Body Weight , Lipid Metabolism , Mammals/genetics , Mammals/metabolism
3.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1760-1769, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282950

ABSTRACT

The present study aimed to investigate the effect of diosgenin on mammalian target of rapamycin(mTOR), fatty acid synthase(FASN), hypoxia inducible factor-1α(HIF-1α), and vascular endothelial growth factor A(VEGFA) expression in liver tissues of rats with non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin on lipogenesis and inflammation in NAFLD. Forty male SD rats were divided into a normal group(n=8) fed on the normal diet and an experimental group(n=32) fed on the high-fat diet(HFD) for the induction of the NAFLD model. After modeling, the rats in the experimental group were randomly divided into an HFD group, a low-dose diosgenin group(150 mg·kg~(-1)·d~(-1)), a high-dose diosgenin group(300 mg·kg~(-1)·d~(-1)), and a simvastatin group(4 mg·kg~(-1)·d~(-1)), with eight rats in each group. The drugs were continuously given by gavage for eight weeks. The levels of triglyceride(TG), total cholesterol(TC), low-density lipoprotein cholesterol(LDL-C), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were detected by the biochemical method. The content of TG and TC in the liver was detected by the enzyme method. Enzyme-linked immunosorbent assay(ELISA) was used to measure interleukin 1ß(IL-1ß) and tumor necrosis factor α(TNF-α) in the serum. Lipid accumulation in the liver was detected by oil red O staining. Pathological changes of liver tissues were detected by hematoxylin-eosin(HE) staining. The mRNA and protein expression levels of mTOR, FASN, HIF-1α, and VEGFA in the liver of rats were detected by real-time fluorescence-based quantitative polymerase chain reaction(PCR) and Western blot, respectively. Compared with the normal group, the HFD group showed elevated body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1ß, and TNF-α(P<0.01), increased lipid accumulation in the liver(P<0.01), obvious liver steatosis, up-regulated mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.01), and increased protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). Compared with the HFD group, the groups with drug treatment showed lowered body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1ß, and TNF-α(P<0.05, P<0.01), reduced lipid accumulation in the liver(P<0.01), improved liver steatosis, decreased mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.05, P<0.01), and declining protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). The therapeutic effect of the high-dose diosgenin group was superior to that of the low-dose diosgenin group and the simvastatin group. Diosgenin may reduce liver lipid synthesis and inflammation and potentiate by down-regulating the mTOR, FASN, HIF-1α, and VEGFA expression, playing an active role in preventing and treating NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Rats , Male , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cholesterol, LDL , Rats, Sprague-Dawley , Liver , Inflammation/metabolism , Diet, High-Fat/adverse effects , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Body Weight , Mammals
4.
ACS Appl Mater Interfaces ; 15(13): 16621-16630, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36949018

ABSTRACT

Cobalt-based catalysts are ideal for CO2 reduction reaction (CO2RR) due to the strong binding and efficient activation of CO2 molecules on cobalt. However, cobalt-based catalysts also show low free energy of hydrogen evolution reaction (HER), making HER competitive with CO2RR. Therefore, how to improve the product selectivity of CO2RR while maintaining the catalytic efficiency is a great challenge. Here, this work demonstrates the critical roles of the rare earth (RE) compounds (Er2O3 and ErF3) in regulating the activity and selectivity of CO2RR on cobalt. It is found that the RE compounds not only promote charge transfer but also mediate the reaction paths of CO2RR and HER. Density functional theory calculations verify that the RE compounds lower the energy barrier of *CO → CO conversion. On the other hand, the RE compounds increase the free energy of HER, which leads to the suppression of HER. As a result, the RE compounds (Er2O3 and ErF3) improve the CO selectivity of cobalt from 48.8 to 69.6%, as well as significantly increase the turnover number by a factor of over 10.

5.
J Ovarian Res ; 16(1): 57, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36945000

ABSTRACT

OBJECTIVE: The accurate preoperative differentiation of benign and malignant adnexal masses, especially those with complex ultrasound morphology, remains a great challenge for junior sonographers. The purpose of this study was to develop and validate a nomogram based on the Ovarian-Adnexal Reporting and Data System (O-RADS) for predicting the malignancy risk of adnexal masses with complex ultrasound morphology. METHODS: A total of 243 patients with data on adnexal masses with complex ultrasound morphology from January 2019 to December 2020 were selected to establish the training cohort, while 106 patients with data from January 2021 to December 2021 served as the validation cohort. Univariate and multivariate analyses were used to determine independent risk factors for malignant tumors in the training cohort. Subsequently, a predictive nomogram model was developed and validated in the validation cohort. The calibration, discrimination, and clinical net benefit of the nomogram model were assessed separately by calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). Finally, we compared this model to the O-RADS. RESULTS: The O-RADS category, an elevated CA125 level, acoustic shadowing and a papillary projection with color Doppler flow were the independent predictors and were incorporated into the nomogram model. The area under the ROC curve (AUC) of the nomogram model was 0.958 (95% CI, 0.932-0.984) in the training cohort. The specificity and sensitivity were 0.939 and 0.893, respectively. This nomogram also showed good discrimination in the validation cohort (AUC = 0.940, 95% CI, 0.899-0.981), with a sensitivity of 0.915 and specificity of 0.797. In addition, the nomogram model showed good calibration efficiency in both the training and validation cohorts. DCA indicated that the nomogram was clinically useful. Furthermore, the nomogram model had higher AUC and net benefit than the O-RADS. CONCLUSION: The nomogram based on the O-RADS showed a good predictive ability for the malignancy risk of adnexal masses with complex ultrasound morphology and could provide help for junior sonographers.


Subject(s)
Adnexal Diseases , Nomograms , Female , Humans , Adnexal Diseases/diagnostic imaging , Adnexal Diseases/pathology , Ultrasonography , Adnexa Uteri/pathology , ROC Curve
6.
Drug Dev Res ; 83(8): 1725-1738, 2022 12.
Article in English | MEDLINE | ID: mdl-36126194

ABSTRACT

Diosgenin, a steroidal saponin, is a natural product found in many plants. Diosgenin has a wide range of pharmacological activities, and has been used to treat cancer, nervous system diseases, inflammation, and infections. Numerous studies have shown that diosgenin has potential therapeutic value for lipid metabolism diseases via various pathways and mechanisms, such as controlling lipid synthesis, absorption, and inhibition of oxidative stress. These mechanisms and pathways have provided ideas for researchers to develop related drugs. In this review, we focus on data from animal and clinical studies, summarizing the toxicity of diosgenin, its pharmacological mechanism, recent research advances, and the related mechanisms of diosgenin as a drug for the treatment of lipid metabolism, especially in obesity, hyperlipidemia, nonalcoholic fatty liver disease, atherosclerosis, and diabetes. This systematic review will briefly describe the advantages of diosgenin as a potential therapeutic drug and seek to enhance our understanding of the pharmacological mechanism, recipe-construction, and the development of novel therapeutics against lipid metabolism diseases.


Subject(s)
Diosgenin , Animals , Diosgenin/pharmacology , Diosgenin/therapeutic use , Lipid Metabolism , Oxidative Stress , Antioxidants/pharmacology , Inflammation/drug therapy
7.
Genome ; 65(8): 443-457, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35849843

ABSTRACT

Aquilaria sinensis is an important non-timber tree species for producing high-value agarwood, which is widely used as a traditional medicine and incense. Agarwood is the product of Aquilaria trees in response to injury and fungal infection. The APETALA2/ethylene responsive factor (AP2/ERF) transcription factors (TFs) play important roles in plant stress responses and metabolite biosynthesis. In this study, 119 AsAP2/ERF genes were identified from the A. sinensis genome and divided into ERF, AP2, RAV, and Soloist subfamilies. Their conserved motif, gene structure, chromosomal localization, and subcellular localization were characterized. A stress/defense-related ERF-associated amphiphilic repression (EAR) motif and an EDLL motif were identified. Moreover, 11 genes that were highly expressed in the agarwood layer in response to whole-tree agarwood induction technique (Agar-Wit) treatment were chosen, and their expression levels in response to methyl jasmonate (MeJA), salicylic acid (SA), or salt treatment were further analyzed using the quantitative real time PCR (qRT-PCR). Among the 11 genes, eight belonged to subgroup B-3. All 11 genes were significantly upregulated under salt treatment, while eight genes were significantly induced by both MeJA and SA. In addition, the gene clusters containing these upregulated genes on chromosomes were observed. The results obtained from this research not only provide useful information for understanding the functions of AP2/ERF genes in A. sinensis but also identify candidate genes and gene clusters to dissect their regulatory roles in agarwood formation for future research.


Subject(s)
Gene Expression Regulation, Plant , Thymelaeaceae , Ethylenes , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Thymelaeaceae/genetics , Thymelaeaceae/metabolism
8.
J Am Chem Soc ; 144(26): 11822-11830, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35679487

ABSTRACT

Multi-wavelength lasers, especially the triple-wavelength laser around 1060 nm, could be produced by the 4F3/2 → 4I11/2 transition of Nd3+ and present numerous challenges and opportunities in the field of optoelectronics. The Nd3+-doped high-temperature phase of LaBSiO5 (ß-LBSO) is an ideal crystal to produce triple-wavelength lasers; however, the crystal growth is challenging because of the phase transition from ß-LBSO to low-temperature phase (α-LBSO) at 162 °C. This phase transition is successfully suppressed when the doping content of Nd3+ is larger than 6.3 at. %, and the Nd3+-doped ß-LBSO is stable at room temperature. The local disorder of BO4 tetrahedra due to Nd3+ doping is essential to the stabilization of ß-LBSO. For the first time, the ß-LBSO:8%Nd3+ crystal with a dimension of 1.8 × 1.8 × 1.8 cm3 is obtained through the top-seeded solution method. The crystal shows strong optical absorption in the range of 785-815 nm, matching well with the commercial laser diode pumping source. The optical emission of 4F3/2 → 4I11/2 splits into four peaks with the highest optical emission cross section of 2.14 × 10-20 cm2 at 1068 nm. The continuous-wave triple-wavelength generation of coherent light at 1047, 1071, and 1092 nm is achieved with the highest output power of 235 mW and efficiency of 12.1%.

9.
Angew Chem Int Ed Engl ; 61(27): e202202089, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35460153

ABSTRACT

Rational synthesis of hydrogen-bonded organic frameworks (HOFs) with predicted structure has been a long-term challenge. Herein, by using the efficient, simple, low-cost, and scalable mechanosynthesis, we demonstrate that reticular chemistry is applicable to HOF assemblies based on building blocks with different geometry, connectivity, and functionality. The obtained crystalline HOFs show uniform nano-sized morphology, which is challenging or unachievable for conventional solution-based methods. Furthermore, the one-pot mechanosynthesis generated a series of Pd@HOF composites with noticeably different CO oxidation activities. In situ DRIFTS studies indicate that the most efficient composite, counterintuitively, shows the weakest CO affinity to Pd sites while the strongest CO affinity to HOF matrix, revealing the vital role of porous matrix to the catalytic performance. This work paves a new avenue for rational synthesis of HOF and HOF-based composites for broad application potential.

10.
Inorg Chem ; 60(14): 10738-10748, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34212711

ABSTRACT

The metal/carbon composites prepared by direct pyrolysis of metal-organic frameworks (MOFs) are regarded as ideal catalysts. However, conventional MOFs show a three-dimensional bulk structure. For bulk MOF-derived catalysts, most active metal sites are confined in the interior and not fully utilized. In this work, metal-organic monolayers (MOLs) are used as the starting precursors to prepare carbon-wrapped metal nanoparticles, which are further employed as catalysts for photocatalytic CO2 reduction. The as-prepared Ni-MOLs and Co-MOLs have an ultrathin thickness of ∼1 nm. It is interestingly found that their derived Ni@C and Co@C nanoparticles are highly dispersive and connected with each other like a piece of paper. As compared with bulk MOF-derived counterparts, MOL-derived catalysts increase the accessibility of active metal sites, which can accelerate electron transfer from photosensitizers to Ni@C and Co@C nanoparticles. In this way, the catalytic activity can be greatly improved. Besides, the magnetic nature of Ni@C and Co@C nanoparticles enables the easy separation and recycling of catalysts. It is expected that this work will provide instructive guidelines for the rational design of MOL-derived catalysts.

11.
ACS Nano ; 15(3): 5355-5365, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33631928

ABSTRACT

Cellulose fiber (CF) paper is a low-cost, sustainable, and flexible substrate, which has gained increasing interest recently. Before practical usage, the functionalization of the pristine CF paper is indispensable to meet requirements of specific applications. Different from conventional surface modification or physical mixing methods, we report in situ growth of ultralong hydroxyapatite nanowires (HAPNWs) with lengths larger than 10 µm on the CF paper. HAPNWs are radially aligned on the surface of CFs, creating a micro/nanoscale hierarchical structure. By means of the excellent ion exchange ability of HAP and the hierarchical structure, the functions of the CF paper can be easily customized. As a proof-of-concept, we demonstrate two kinds of functional CF paper: (1) the photoluminescent CF paper by doping Eu3+ and Tb3+ ions into the crystal lattice of HAPNWs and (2) the superhydrophobic CF paper by coating poly(dimethylsiloxane) on the HAPNW hierarchical structure, which can be applied for self-cleaning and oil/water separation. It is expected that an in situ growth of ultralong HAPNWs will provide an instructive guideline for designing a CF paper with specific functions.

12.
Ying Yong Sheng Tai Xue Bao ; 32(1): 182-190, 2021 Jan.
Article in Chinese | MEDLINE | ID: mdl-33477226

ABSTRACT

The climate change caused by elevated CO2 concentration and drought are bound to affect the growth of soybean. Few studies have addressed the effects of elevated CO2 concentration on the physiology and biochemistry of soybean under drought stress. Here, we examined the changes of photosynthetic ability, photosynthetic pigment accumulation, antioxidant level, osmotic adjustment substances, hormone levels, signal transduction enzymes and gene expression level of soybean at flowering stage under different CO2 concentration (400 and 600 µmol·mol-1) and drought stress (normal water: leaf relative water content was 83%-90%; drought stress: leaf relative water content was 64%-70%). The results showed that the transpiration rate, water use efficiency and net photosynthetic rate of soybean leaves were significantly increased by elevated CO2 concentration, but the content of chlorophyll b was decreased under drought stress. Elevated CO2 concentration significantly increased peroxidase activity and abscisic acid content of leaves under drought stress, decreased the content of proline, and did not affect the content of soluble saccharides. The increased CO2 concentration under drought stress significantly promoted the content of calcium-dependent protein kinase and glutathione-S-transferase, and up-regulated the expression of related genes, while significantly decreased the content of mitogen-activated protein kinase and the heat shock protein, and down-regulated the expression of their genes. The results would be helpful to understand the impacts of climate change on the growth, physiology and biochemistry of soybean, and to deal with the production problems of soybean under future climate change.


Subject(s)
Droughts , Glycine max , Carbon Dioxide , Photosynthesis , Plant Leaves , Water
13.
Med Sci Monit ; 27: e928109, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33515446

ABSTRACT

BACKGROUND Chewing dysfunction is one of the most common serious complications after a stroke. It may be influenced by the hardness of the masseter muscle and masticatory performance; however, the association between these 2 factors is not explicit. Thus, it is meaningful to explore the functional status of the masseter muscle among stroke patients. The main objectives of this study were to examine the intra- and inter-rater reliability of the MyotonPRO apparatus in measuring masseter muscle hardness in stroke patients and to investigate the correlation between the bilateral masseter muscle hardness and masticatory performance in these patients. MATERIAL AND METHODS A total of 20 stroke patients participated in our study. The hardness of the masseter muscle was measured by 2 physiotherapists using the MyotonPRO apparatus. Overall, each patient masticated 2 pieces of red-blue bicolor chewing gum for 20 chewing cycles each. The chewing pieces were analyzed using ViewGum software for masticatory performance. RESULTS The intra- and inter-rater reliability of the MyotonPRO apparatus for measuring bilateral masseter hardness of stroke patients was excellent. The correlation analysis showed that the hardness index of the masseter muscle on the affected side was moderately correlated with the masticatory performance of the same side. CONCLUSIONS The MyotonPRO device can be used for measuring the masseter muscle hardness of stroke patients, with excellent reliability. This study established the construct validity between the stiffness of the masseter muscle and masticatory performance.


Subject(s)
Masseter Muscle/physiology , Mastication/physiology , Stroke/physiopathology , Adult , Chewing Gum , China , Electromyography/methods , Female , Hardness , Humans , Male , Masseter Muscle/metabolism , Middle Aged , Reproducibility of Results
14.
Med Sci Monit ; 26: e926407, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33071278

ABSTRACT

BACKGROUND Achilles tendinopathy commonly occurs in specific regions of the tendon, and Achilles tendon stiffness can be related to local pathological changes in the tendon. The MyotonPRO is a new handheld device that conveniently assesses stiffness of muscles and tendons. This study aimed to 1) evaluate the intra- and inter-rater reliability of stiffness measurements of the Achilles tendon at different ankle positions, 2) investigate the modulation of stiffness at different ankle joint angles, and 3) examine the differences between 2 regions of Achilles tendon stiffness. MATERIAL AND METHODS Thirty healthy young adults (15 men and 15 women) participated in this study. The regional Achilles tendon stiffness at 0 cm (AT-0) and 6 cm (AT-6) above the tendon insertion were evaluated by the MyotonPRO in the neutral position and 10° dorsiflexion of the ankle joint. Measurements of stiffness were taken by 2 raters on the first day and 5 days later. The stiffness data were compared by repeated measures analysis of variance (ANOVA). RESULTS The intra- and inter-rater reliability of stiffness measurements at AT-0 and AT-6 for each ankle position were good (all intraclass correlation coefficients >0.84). A significant modulation of Achilles tendon stiffness was obtained at different ankle joint angles (P<0.05). Stiffness at AT-0 was higher than at AT-6 (P<0.05) in both positions. CONCLUSIONS These results suggest the MyotonPRO reliably assessed Achilles tendon stiffness and monitors its modulation, and tendon stiffness increased with ankle dorsiflexion. Stiffness was also nonuniform along the length of the tendon.


Subject(s)
Achilles Tendon , Ankle Joint , Muscle, Skeletal , Achilles Tendon/pathology , Achilles Tendon/physiopathology , Adult , Ankle Joint/pathology , Ankle Joint/physiopathology , Female , Humans , Male , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Range of Motion, Articular , Tendinopathy/pathology , Tendinopathy/physiopathology
15.
Microb Pathog ; 148: 104492, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32916243

ABSTRACT

After sequence comparison, it was found that there are multiple amino acid mutations in pre-M and envelope (E) protein of Japanese encephalitis virus vaccine strain comparison with wild type (WT) strain SA14. It is generally acknowledged it is the mutations that have caused the virulence attenuation of vaccine strain, but lack of sufficient experimental evidences. For a better understanding of the mechanism of attenuation of Japanese encephalitis virus (JEV), in this study, we assessed whether prM/E is critical neurovirulence determinants of JEV with infectious cDNA clones technique. Substitutions prM/E of vaccine strain with that of WT SA14 did significantly increase the virulence of JEV to the similar level of wild type SA14, and simultaneously, replacement prM/E of JEV WT strain SA14 with that of vaccine strain SA14-14-2 decreased the virulence of JEV significantly to the similar level of vaccine stain. The results indicate that the prM/E protein is the crucial virulence determinant of Japanese encephalitis virus, although other proteins take part in the process to some extent.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Encephalitis Virus, Japanese/genetics , Humans , Vaccines, Attenuated , Viral Envelope Proteins/genetics , Virulence
16.
Comput Intell Neurosci ; 2020: 7179647, 2020.
Article in English | MEDLINE | ID: mdl-32765597

ABSTRACT

Multiobjective evolutionary algorithms (MOEAs) with higher population diversity have been extensively presented in literature studies and shown great potential in the approximate Pareto front (PF). Especially, in the recent development of MOEAs, the reference line method is increasingly favored due to its diversity enhancement nature and auxiliary selection mechanism based on the uniformly distributed reference line. However, the existing reference line method ignores the nadir point and consequently causes the Pareto incompatibility problem, which makes the algorithm convergence worse. To address this issue, a multiobjective evolutionary algorithm based on the adaptive cross-reference line method, called MOEA-CRL, is proposed under the framework of the indicator-based MOEAs. Based on the dominant penalty distance (DPD) indicator, the cross-reference line method can not only solve the Pareto incompatibility problem but also enhance the population diversity on the convex PF and improve the performances of MOEA-CRL for irregular PF. In addition, the MOEA-CRL adjusts the distribution of the cross-reference lines directly defined by the DPD indicator according to the contributing solutions. Therefore, the adaptation of cross-reference lines will not be affected by the population size and the uniform distribution of cross-reference lines can be maintained. The MOEA-CRL is examined and compared with other MOEAs on several benchmark problems. The experimental results show that the MOEA-CRL is superior to several advanced MOEAs, especially on the convex PF. The MOEA-CRL exhibits the flexibility in population size setting and the great versatility in various multiobjective optimization problems (MOPs) and many-objective optimization problems (MaOPs).


Subject(s)
Algorithms
17.
Medicine (Baltimore) ; 99(12): e19519, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32195954

ABSTRACT

BACKGROUND: The purposes of this study were to examine the feasibility of using the MyotonPRO digital palpation device in measuring the passive stiffness of gastrocnemius muscle belly and Achilles tendon; to determine between-days test-retest reliability of MyotonPRO; and to evaluate the acute effect of paraffin therapy on stiffness measurements in healthy participants. METHODS: It is a randomized controlled trial. Twenty healthy participants (male, n = 10; female, n = 10; total, n = 20) were recruited to evaluate the passive stiffness of gastrocnemius muscle belly and Achilles tendon. Dominant and nondominant legs were randomly divided into an experimental side (20 cases) and a control side (20 cases). The experimental side received 20 minutes of paraffin therapy. RESULTS: The stiffness of muscle and tendon in the experimental side decreased significantly after paraffin therapy (P < .01), whereas no significant differences in stiffness measurements were found in the control side (P > .05). The passive stiffness of muscle and tendon was positively correlated with the ankle from 30° plantar flexion to10° dorsiflexion for dominant legs. Between-days test-retest reliability in stiffness measurements was high or very high (ICCs were above 0.737). CONCLUSION: Paraffin therapy induces a decrease in the passive stiffness of gastrocnemius muscle belly and Achilles tendon. Furthermore, the MyotonPRO can reliably determine stiffness measurements.


Subject(s)
Achilles Tendon/drug effects , Hydrocarbons/therapeutic use , Muscle Tonus/drug effects , Muscle, Skeletal/drug effects , Paraffin/therapeutic use , Achilles Tendon/physiopathology , Adolescent , Adult , Ankle Joint/physiology , Female , Humans , Male , Muscle, Skeletal/physiopathology , Physical Therapy Modalities/trends , Range of Motion, Articular/physiology , Reproducibility of Results , Young Adult
18.
Sci Rep ; 10(1): 2770, 2020 02 17.
Article in English | MEDLINE | ID: mdl-32066869

ABSTRACT

The objectives of this study were (1) to investigate the passive stiffness of the medial gastrocnemius (MG) and lateral gastrocnemius (LG) in patients with and without plantar fasciitis (PF), (2) to explore the correlation between gastrocnemius stiffness and plantar fascia thickness (PFT) as well as the intensity of pain in patients with PF, (3) to detect optimal cut-off points for stiffness of the MG and LG for identifying patients with PF. Forty patients (mean age = 51.1 years ± 12.9) participated in this study. The elastic properties of the MG and LG were quantified using shear wave elastography ultrasound. The thickness of the plantar fascia was measured by B-mode imaging. The intensity of pain was assessed using a visual analogue scale. The results showed that when the ankle was in the relaxed position, patients with PF had increased passive stiffness in the MG (P < 0.05) but not in the LG. Significant correlations were found between pain and the stiffness of the MG (middle, distal; all P-values < 0.05) and no correlation was observed between pain and PFT (P = 0.416). The initial cut-off point for the stiffness of the MG was 29.08 kPa when the ankle was in the relaxed position. The findings from the present study show that an increase in muscle stiffness is not the same in the individual muscles of the gastrocnemius muscle. Traditional treatment of the whole gastrocnemius muscle might not be targeted at the tight muscle.


Subject(s)
Elasticity/physiology , Fasciitis, Plantar/physiopathology , Muscle, Skeletal/physiopathology , Pain/physiopathology , Achilles Tendon/physiopathology , Ankle/physiopathology , Ankle Joint/physiopathology , Elasticity Imaging Techniques , Fasciitis, Plantar/complications , Female , Foot/physiopathology , Humans , Male , Middle Aged , Pain/complications , Range of Motion, Articular
19.
Phys Chem Chem Phys ; 20(47): 29959-29968, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30478461

ABSTRACT

Nanomaterials have excellent adsorption performance, which mainly depends on the adsorption thermodynamics that is related to the shape of the nanoparticles that make up the nanomaterial, but the effects of shape on the thermodynamics of adsorption are not fully clear. In this paper, theoretically, the general formulae of adsorption thermodynamic properties for nanoparticles with different shapes and different sizes were derived, and the influencing regularities and mechanisms on adsorption thermodynamic properties were discussed. Experimentally, the influences of the shape and size of nano-CeO2 on the thermodynamics of adsorption were studied in aqueous solution. The experiment results showed that the shape has significant influences on the thermodynamics of adsorption, and the smaller the particle size, the more significant the effects of shape on the thermodynamics. For the adsorption of nano-CeO2 with different shapes and the same equivalent particle size, compared with the sphere, the equilibrium constant of adsorption for the octahedron is larger, while the molar Gibbs free energy of adsorption , the molar adsorption enthalpy of adsorption and the molar adsorption entropy of adsorption are smaller. For the adsorption of nano-CeO2 with the same shape, with the decreasing particle size, increases, while , and decrease; and , , and are each linearly related to the reciprocal of particle size. The experimental results are consistent with the theoretical relations. The theories can quantitatively describe the adsorption behavior on nanoparticles, explain the regularities and mechanisms of influence of shape, and provide guidance for the research and application of nanoadsorption.

20.
Dalton Trans ; 46(31): 10210-10214, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28762420

ABSTRACT

With the aid of a bifunctional 6-mercaptonicotinic acid ligand, a novel {Ni12Gd24} cage-based (6, 12)-c alb-MROF that is assembled from a {Gd4(OH)4(COO)6} trigonal-prism building unit and a {Ni6S12} hexagonal-prism molecular building block has been synthesized for the first time. It exhibits a large MCE value of 29.86 J kg-1 K-1 for ΔH = 8 T at 2 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...