Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Int J Biol Macromol ; 272(Pt 1): 132805, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825261

ABSTRACT

The composites composed of hyaluronic acid (HA) and silk fibroin (SF) exhibit great potential in diverse biomedical applications. However, the utilization of commercial crosslinkers such as 1,4-butanediol diglycidyl ether (BDDE) for crosslinking HA typically necessitates harsh conditions involving strong alkaline, which greatly limits its potential applications. In this study, a mild modified approach was developed to fabricate HA/SF blend sponges crosslinked by BDDE without alkaline conditions. The blend solutions were cryo-concentrated to induce crosslinking reactions. The mechanism of freezing crosslinking was elucidated by investigating the effects of ice crystal growth and HA molecular weight on the degree of crosslinking. The results revealed that HA achieved efficient crosslinking when its molecular weight exceeds 1000 kDa and freezing temperatures ranged from -40 °C to -20 °C. After introducing SF, multiple crosslinks were formed between SF and HA chains, producing water-stable porous sponges. The SEM results demonstrated that the introduction of SF effectively enhanced the interconnectivity between macropores through creating subordinate holes onto the pores wall. Raising the SF content significantly enhanced compression strength, resistance to enzymatic degradation and cell viability of blend sponges. This study provides a novel strategy for designing bioactive HA/SF blend sponges as substitutes for tissue repair and wound dressing.

2.
Int J Gen Med ; 17: 2643-2653, 2024.
Article in English | MEDLINE | ID: mdl-38859910

ABSTRACT

Purpose: Few studies have reported the integrated characteristics of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after long-term antiviral therapy. This study aimed to investigate the HBV integration features in HBV-HCC patients who had undergone long-term antiviral therapy, evaluate their impact on clinical indicators, and analyze the potential mechanisms involved. Patients and Methods: We utilized genome-wide association study (GWAS) to analyze liver cancer tissues and detect the presence of HBV integration. Seventeen patients with HBV integration were included in the integration (Int) group, while the remaining five patients were included in the non-integration (N-int) group. Clinical indicators were regularly monitored and compared between the two groups. The characteristics of HBV integration patterns were analyzed, and differences between the groups were explored at the chromosome and genomic levels. Results: After long-term antiviral therapy, although the frequency of HBV integration in HBV-HCC was reduced, residual HBV integration still accelerated the development of HCC. It affected the diagnosis, treatment, and prognosis of patients. HBV integration events led to changes in chromosome structure, which were closely related to HCC. Novel fusion genes were detected at a high frequency and had the potential to be specific detection sites for HBV-HCC. Conclusion: HBV integration events are synergistically involved in the human genome and HBV, which can lead to chromosome structural instability, gene rearrangement events closely related to HCC production, and the formation of new specific fusion genes.

3.
J Int Med Res ; 52(4): 3000605241237680, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38606755

ABSTRACT

Intraventricular haemorrhage (IVH) is a severe and acute type of stroke with a complex pathophysiology and is a therapeutic challenge. This case report described a man in his early 50's diagnosed with IVH by computed tomography (CT). Although bilateral extraventricular drainage (EVD) was undertaken, a postoperative CT scan showed that while the left catheter was correctly positioned, the right catheter had been wrongly inserted into the cisterna ambiens. The procedure was equivalent to simultaneous EVD combined with cisternostomy. As a consequence, the haematoma was rapidly removed, the risk of infection and long-term hydrocephalus was reduced, and prognosis was improved. Large case-control studies or prospective studies are needed to evaluate the safety and effectiveness of this treatment modality.


Subject(s)
Cerebral Hemorrhage , Hydrocephalus , Male , Humans , Zolpidem/therapeutic use , Treatment Outcome , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/surgery , Hydrocephalus/surgery , Drainage/methods , Catheters/adverse effects
4.
Angew Chem Int Ed Engl ; 63(22): e202403421, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38533686

ABSTRACT

Adsorptive separation of propyne/propylene (C3H4/C3H6) is a crucial yet complex process, however, it remains a great difficulty in developing porous materials that can meet the requirements for practical applications, particularly with an exceptional ability to bind and store trace amounts of C3H4. Functionalization of pore-partitioned metal-organic frameworks (ppMOFs) is methodically suited for this challenge owing to the possibility of dramatically increasing binding sites on highly porous and confined domains. We here immobilized Lewis-basic (-NH2) and Lewis-acidic (-NO2) sites on this platform. Along with an integrated nature of high uptake of C3H4 at 1 kPa, high uptake difference of C3H4-C3H6, moderated binding strength, promoted kinetic selectivity, trapping effect and high stability, the NH2-decorated ppMOF (NTU-100-NH2) can efficiently produce polymer-grade C3H6 (99.95 %, 8.3 mmol ⋅ g-1) at room temperature, which is six times more than the NO2-decorated crystal (NTU-100-NO2). The in situ infrared spectroscopy, crystallographic analysis, and sequential blowing tests showed that the densely packed amino group in this highly porous system has a unique ability to recognize and stabilize C3H4 molecules. Moving forward, the strategy of organic functionalization can be extended to other porous systems, making it a powerful tool to customize advanced materials for challenging tasks.

5.
Anticancer Res ; 43(9): 3997-4005, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648308

ABSTRACT

BACKGROUND/AIM: Serum markers to determine the histological grade of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) are still limited. This study aimed to investigate if serum extra spindle pole bodies-like 1 (ESPL1) protein could reflect the histological grade of HBV-related HCC. MATERIALS AND METHODS: A total of 154 patients with HBV-related HCC were enrolled in the experimental group and 41 non-HBV-related patients in the control. Enzyme-linked immunosorbent assay was used to detect serum ESPL1 levels. The differences in serological ESPL1, alpha-fetoprotein (AFP), and des-gamma-carboxy prothrombin (DCP) were compared between the two groups. HCC tumor diameter was measured, and pathological examination was performed to compare the relationship between ESPL1, AFP, and DCP and tumor size and histological grade. RESULTS: Serum AFP and DCP levels showed no significant difference between experimental group and control group, and increased when the tumor diameter increased but were not related to HCC histological grade. Serological ESPL1 levels were higher in the experimental group than those in the control group, and positively correlated with the histological grade. In the experimental group, tumor size and histological grade were almost independent (Kappa=0.000); patients with medium size tumors had the highest serum ESPL1 levels and the highest proportion of poorly differentiated carcinomas, whereas 75.6% of patients with small size tumors had moderately differentiated carcinomas and only 20% well differentiated carcinomas. CONCLUSION: Serum ESPL1 can reflect the malignant degree of HBV-related HCC and is helpful in identifying small size HCC tumors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Hepatitis B virus , alpha-Fetoproteins , Case-Control Studies , East Asian People , Spindle Pole Bodies , Separase
6.
Int J Biol Macromol ; 237: 124223, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36996961

ABSTRACT

Protein nanofibers offer great promise for tissue engineering scaffolds owing to biomimetic architecture and exceptional biocompatibility. Natural silk nanofibrils (SNFs) are promising but unexplored protein nanofibers for biomedical applications. In this study, the SNF-assembled aerogel scaffolds with ECM-mimicking architecture and ultra-high porosity are developed based on a polysaccharides-assisted strategy. The SNFs exfoliated from silkworm silks can be utilized as building blocks to construct 3D nanofibrous scaffolds with tunable densities and desirable shapes on a large scale. We demonstrate that the natural polysaccharides can regulate SNF assembly through multiple binding modes, endowing the scaffolds with structural stability in water and tunable mechanical properties. As a proof of concept, the biocompatibility and biofunctionality of the chitosan-assembled SNF aerogels were investigated. The nanofibrous aerogels have excellent biocompatibility, and their biomimetic structure, ultra-high porosity, and large specific surface area endow the scaffolds with enhanced cell viability to mesenchymal stem cells. The nanofibrous aerogels were further functionalized by SNF-mediated biomineralization, demonstrating their potential as a bone-mimicking scaffold. Our results show the potential of natural nanostructured silks in the field of biomaterials and provide a feasible strategy to construct protein nanofiber scaffolds.


Subject(s)
Nanofibers , Silk , Silk/chemistry , Nanofibers/chemistry , Biomimetics , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Tissue Engineering/methods
7.
Cancers (Basel) ; 15(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36831352

ABSTRACT

Bladder cancer is one of the most common malignancies of the urinary tract and can be divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Although the means of diagnosis and treatment have continually improved in recent years, the recurrence rate of bladder cancer remains high, and patients with MIBC typically have an unfavourable prognosis and a low quality of life. Emerging evidence demonstrates that long noncoding RNAs play a crucial role in the carcinogenesis and progression of bladder cancer. Long intergenic noncoding RNAs (lincRNAs) are a subgroup of long noncoding RNAs (lncRNAs) that do not overlap protein-coding genes. The potential role of lincRNAs in the regulation of gene expression has been explored in depth in recent years. Small nucleolar RNAs (snoRNAs) are a class of noncoding RNAs (ncRNAs) that mainly exist in the nucleolus, are approximately 60-300 nucleotides in length, and are hosted inside the introns of genes. Small nucleolar RNA host genes (SNHGs) have been associated with the origin and development of bladder cancer. In this review, we aim to comprehensively summarize the biological functions of these molecules in bladder cancer.

8.
Cancers (Basel) ; 14(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36230532

ABSTRACT

The Energy-adjusted Dietary Inflammatory Index (E-DIITM) is a comprehensive, literature-derived index for assessing the effect of dietary constituents on inflammatory biomarkers and inflammation-related chronic diseases. Several studies have examined the association between E-DII scores and mortality, with results that vary across populations. Therefore, in the present study, we aimed to investigate the potential association between E-DII scores and all-cause, cardiovascular disease (CVD), and cancer mortality using data from the Prostate, Lung, Colorectal and Ovarian (PLCO) Screening Trial. E-DII scores, calculated based on a food-frequency questionnaire, were analyzed both as a continuous variable and after categorization into quintiles. A multivariate Cox proportional hazards model was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). A total of 101,832 individuals were included, with 24,141 deaths recorded after a median of 17.0 years of follow-up. In multivariable-adjusted analyses, the E-DII score was significantly associated with all-cause mortality. The HR (95% CI) in the highest E-DII quintile compared to the lowest quintile was 1.23 (1.18-1.29). The E-DII was also statistically related to CVD mortality (Q5 vs. Q1; HR, 1.30 [95% CI, 1.20-1.41]) and cancer mortality (Q5 vs. Q1; HR, 1.14 [95% CI, 1.06-1.24]). Similar results were obtained from sensitivity analyses and subgroup analyses. In conclusion, the inflammatory potential of the diet, as calculated by the E-DII, was significantly associated with overall and CVD- and cancer-specific mortality risk in the PLCO study.

9.
Front Pharmacol ; 13: 956173, 2022.
Article in English | MEDLINE | ID: mdl-36210810

ABSTRACT

Diabetic erectile dysfunction (DED) is one of the most common complications of diabetes mellitus. However, current therapeutics have no satisfactory effect on DED. In recent years, traditional Chinese medicine (TCM) has shown good effects against DED. By now, several clinical trials have been conducted to study the effect of TCM in treating DED; yet, the underlying mechanism is not fully investigated. Therefore, in this review, we briefly summarized the pathophysiological mechanism of DED and reviewed the published clinical trials on the treatment of DED by TCM. Then, the therapeutic potential of TCM and the underlying mechanisms whereby TCM exerts protective effects were summarized. We concluded that TCM is more effective than chemical drugs in treating DED by targeting multiple signaling pathways, including those involved in oxidation, apoptosis, atherosclerosis, and endothelial function. However, the major limitation in the application of TCM against DED is the lack of a large-scale, multicenter, randomized, and controlled clinical trial on the therapeutic effect, and the underlying pharmaceutical mechanisms also need further investigation. Despite these limitations, clinical trials and further experimental studies will enhance our understanding of the mechanisms modulated by TCM and promote the widespread application of TCM to treat DED.

10.
Diagnostics (Basel) ; 12(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36292157

ABSTRACT

Circular RNAs (circRNAs) are a class of noncoding RNAs with closed-loop of single-stranded RNA structure. Although most of the circRNAs do not directly encode proteins, emerging evidence suggests that circRNAs play a pivotal and complex role in multiple biological processes by regulating gene expression. As one of the most popular circRNAs, circular homeodomain-interacting protein kinase 3 (circHIPK3) has frequently gained the interest of researchers in recent years. Accumulating studies have demonstrated the significant impacts on the occurrence and development of multiple human diseases including cancers, cardiovascular diseases, diabetes mellitus, inflammatory diseases, and others. The present review aims to provide a detailed description of the functions of circHIPK3 and comprehensively overview the diagnostic and therapeutic value of circHIPK3 in these certain diseases.

11.
Cancer Manag Res ; 14: 2379-2388, 2022.
Article in English | MEDLINE | ID: mdl-35967753

ABSTRACT

Mesenchymal-epithelial transition factor (c-Met) belongs to the tyrosine kinase receptor family and is overexpressed in various human cancers. Its ligand is hepatocyte growth factor (HGF), and the HGF/c-Met signaling pathway is involved in a wide range of cellular processes, including cell proliferation, migration, and metastasis. Emerging studies have indicated that c-Met expression is strongly associated with bladder cancer (BCa) development and prognosis. Therefore, c-Met is a potential therapeutic target for BCa treatment. Recently, the aberrant expression of noncoding RNAs was found to play a significant role in tumour progression. There is a close connection between c-Met and noncoding RNA. Herein, we summarized the biological function and prognostic value of c-Met in BCa, as well as its potential role as a drug target. The relation of c-Met and ncRNA was also described in the paper.

12.
Front Plant Sci ; 13: 890550, 2022.
Article in English | MEDLINE | ID: mdl-35755691

ABSTRACT

Foxtail millet (Setaria italica) is a monotypic species widely planted in China. However, residual atrazine, a commonly used maize herbicide, in soil, is a major abiotic stress to millet. Here, we investigated atrazine tolerance in millet based on the field experiments, then obtained an atrazine-resistant variety (Gongai2, GA2) and an atrazine-sensitive variety (Longgu31, LG31). To examine the effects of atrazine on genes and metabolites in millet plants, we compared the transcriptomic and metabolomic profiles between GA2 and LG31 seedling leaves. The results showed that 2,208 differentially expressed genes (DEGs; 501 upregulated, 1,707 downregulated) and 192 differentially expressed metabolites (DEMs; 82 upregulated, 110 downregulate) were identified in atrazine-treated GA2, while in atrazine-treated LG31, 1,773 DEGs (761 upregulated, 1,012 downregulated) and 215 DEMs (95 upregulated, 120 downregulated) were identified. The bioinformatics analysis of DEGs and DEMs showed that many biosynthetic metabolism pathways were significantly enriched in GA2 and LG31, such as glutathione metabolism (oxiglutatione, γ-glutamylcysteine; GSTU6, GSTU1, GSTF1), amino acid biosynthesis (L-cysteine, N-acetyl-L-glutamic acid; ArgB, GS, hisC, POX1), and phenylpropanoid biosynthesis [trans-5-o-(4-coumaroyl)shikimate; HST, C3'H]. Meanwhile, the co-expression analysis indicated that GA2 plants had enhanced atrazine tolerance owing to improved glutathione metabolism and proline biosynthesis, and the enrichment of scopoletin may help LG31 plants resist atrazine stress. Herein, we screened an atrazine-resistant millet variety and generated valuable information that may deepen our understanding of the complex molecular mechanism underlying the response to atrazine stress in millet.

13.
Polymers (Basel) ; 13(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34685354

ABSTRACT

One of the major challenges for lung cancer gene therapy is to find a gene delivery vector with high efficiency and low toxicity. In this study, low-molecular-weight polyethyleneimine (PEI, 1.8 kDa) was grafted onto the side chains of Bombyx mori silk fibroin (BSF) to prepare cationized BSF (CBSF), which was used to package the plasmid DNA (pDNA) encoded by the inhibitor of growth 4 (ING4) and interleukin-24 (IL-24). FTIR and 1H-NMR spectra demonstrated that PEI was effectively coupled to the side chains of BSF by amino bonds. The results of the trinitrobenzene sulfonic acid method and zeta potential showed that the free amino group content on BSF increased from 125.1 ± 1.2 µmol/mL to 153.5 ± 2.2 µmol/mL, the isoelectric point increased from 3.68 to 8.82, and the zeta potential reversed from - 11.8 ± 0.1 mV to + 12.4 ± 0.3 mV after PEI grafting. Positively charged CBSF could package pDNA to form spherical CBSF/pDNA complexes. In vitro, human lung adenocarcinoma A549 cells and human embryonic lung fibroblast WI-38 cells were transfected with CBSF/pDNA complexes. Confocal laser scanning microscopy analysis and flow cytometry tests showed that CBSF/pDNA complexes can effectively transfect A549 cells, and the transfection efficiency was higher than that of 25 kDa PEI/pDNA complexes. CCK-8 assay results showed that CBSF/pDNA complexes significantly inhibited the proliferation of A549 cells but had no significant effect on WI-38 cells and exhibited lower cytotoxicity to WI-38 cells than 25 kDa PEI. Therefore, a gene delivery system, constructed with the low-molecular-weight PEI-modified silk fibroin protein and the ING4-IL-24 double gene coexpression plasmid has potential applications in gene therapy for lung cancer.

14.
Article in English | MEDLINE | ID: mdl-33986822

ABSTRACT

Electroacupuncture has shown protective effects on cognitive decline. However, the underlying molecular mechanisms are not clear. The present study was conducted to determine whether the cognitive function was ameliorated in cerebral hypoperfusion rats following electroacupuncture and to investigate the role of miR-137/NOX4 axis. In this study, chronic cerebral hypoperfusion (CCH) model was established by bilateral common carotid artery occlusion. Electroacupuncture treatment attenuated brain injury in CCH model group via regulating miR-137/NOX4 axis. Furthermore, the data of neuronal apoptosis and oxidative stress were observed. Our findings indicated that (1) neuronal apoptosis and oxidative stress in CCH rats were significantly increased compared with control group; (2) the animal cognitive performance was evaluated using the Morris water maze (MWM). The results showed that electroacupuncture therapy ameliorated spatial learning and memory impairment in cerebral hypoperfusion rats; and (3) electroacupuncture therapy reduces neuronal apoptosis and oxidative stress by activating miR-137/NOX4 axis. These results suggest that electroacupuncture therapy for CCH may be mediated by miR-137/NOX4 axis. Electroacupuncture therapy may act as a potential therapeutic approach for chronic cerebral hypoperfusion.

15.
Nanomedicine (Lond) ; 16(10): 839-853, 2021 04.
Article in English | MEDLINE | ID: mdl-33890489

ABSTRACT

Aim: To obtain a gene carrier that can effectively deliver loaded therapeutic genes to tumor cells, avoid toxic effects on normal cells and reduce nonspecific adsorption of plasma proteins. Methods: The conjugate of poly(ethylene glycol) (PEG) and MMP2SSP (PEG-MMP2SSP) was covalently coupled to cationized Antheraea pernyi silk fibroin (CASF) through disulfide bond exchange reaction to obtain a PEG-MMP2SSP-modified CASF (CASFMP). Results: The PEG chains were effectively cleaved from the CASFMP by MMP2. CASFMP/pDNA complexes inhibited human fibrosarcoma cell proliferation, and its cytotoxicity to human normal embryonic kidney cells was significantly lower than that of poly(ethylenimine)/pDNA after coculturing with cells for 24 h. Conclusion: CASFMP is a promising compound for use in gene therapy.


Subject(s)
Fibroins , Moths , Animals , Gene Transfer Techniques , Genetic Therapy , Humans , Polyethylene Glycols , Silk
16.
Sci Rep ; 11(1): 4330, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619339

ABSTRACT

Silicon plays a vital role in plant growth. However, molecular mechanisms in response to silicon have not previously been studied in wheat. In this study, we used RNA-seq technology to identify differentially expressed genes (DEGs) in wheat seedlings treated with silicon. Results showed that many wheat genes responded to silicon treatment, including 3057 DEGs, of which 6.25% (191/3057) were predicted transcription factors (TFs). Approximately 14.67% (28 out of 191) of the differentially expressed TFs belonged to the MYB TF family. Gene ontology (GO) enrichment showed that the highly enriched DEGs were responsible for secondary biosynthetic processes. According to KEGG pathway analysis, the DEGs were related to chaperones and folding catalysts, phenylpropanoid biosynthesis, and protein processing in the endoplasmic reticulum. Moreover, 411 R2R3-MYB TFs were identified in the wheat genome, all of which were classified into 15 groups and accordingly named S1-S15. Among them, 28 were down-regulated under silicon treatment. This study revealed the essential role of MYB TFs in the silicon response mechanism of plants, and provides important genetic resources for breeding silicon-tolerant wheat.


Subject(s)
Gene Expression Regulation, Plant , Silicon/metabolism , Transcription Factors/genetics , Transcriptome , Triticum/genetics , Triticum/metabolism , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Ontology , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phylogeny , Sequence Analysis, RNA , Silicon/pharmacology , Transcription Factors/metabolism , Triticum/classification
17.
Polymers (Basel) ; 12(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947834

ABSTRACT

A major challenge for the silk textile industry and for the process of silk-based biomaterials is to find a degumming method that can completely remove sericin while avoiding obvious hydrolysis damage to the silk fibroin. In this study, papain was used to degum Bombyx mori silk fibers under nearly neutral conditions based on the specificity of papain to sericin. The degumming efficiency was investigated, as well as the mechanical properties and molecular weight of the sericin-free silk fibroin. The results indicated that increasing the papain concentration aided in sericin removal, as the concentration increased to 3.0 g/L, the degummed fibers showed a clean, smooth surface morphology and exhibited a yellow color when stained by picric acid and carmine, confirming the complete removal of sericin from silk fibroin. Furthermore, an analysis of the amino acid composition indicated that the silk fibroin suffered less damage because papain specifically cleaved the binding sites between L-arginine or L-lysine residue and another amino acid residue in sericin, leading to a significantly higher molecular weight and improved tensile strength compared to traditional sodium carbonate degumming. This study provides a novel degumming method which cannot only completely remove sericin, but also maintain the original strong mechanical properties and high molecular weight of silk fibroin.

18.
Materials (Basel) ; 13(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751473

ABSTRACT

When silk fibroin particles are used for controlled drug delivery, particle size plays a key role in the location of the carrier on the cells as well as the transport pathway, utilization efficiency, and therapeutic effect of the drugs. In this study, the interactions of different-sized silk fibroin particles and cell lines were investigated. Silk fibroin microparticles with dry size of 1.9 ± 0.4 µm (2.7 ± 0.3 µm in wet state) and silk fibroin nanoparticles with dry size of 51.5 ± 11.0 nm (174.8 ± 12.5 nm in wet state) were prepared by salting-out method and high-voltage electrospray method, respectively. CdSe/ZnS quantum dots were coupled to the surface of the micro/nanoparticles. Photostability observations indicated that the fluorescence stability of the quantum dots was much higher than that of fluorescein isothiocyanate. In vitro, microparticles and nanoparticles were co-cultured with human umbilical vein endothelial cells EA.hy 926 and cervical cancer cells HeLa, respectively. The fluorescence test and cell viability showed that the EA.hy926 cells tended to be adhered to the microparticle surfaces and the cell proliferation was significantly promoted, while the nanoparticles were more likely to be internalized in HeLa cells and the cell proliferation was notably inhibited. Our findings might provide useful information concerning effective drug delivery that microparticles may be preferred if the drugs need to be delivered to normal cell surface, while nanoparticles may be preferred if the drugs need to be transmitted in tumor cells.

19.
PeerJ ; 8: e9551, 2020.
Article in English | MEDLINE | ID: mdl-32742811

ABSTRACT

The Ethylene-Response Factor (ERF) subfamily transcription factors (TFs) belong to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily and play a vital role in plant growth and development. However, identification and analysis of the ERF subfamily genes in maize have not yet been performed at genome-wide level. In this study, a total of 76 ERF subfamily TFs were identified and were found to be unevenly distributed on the maize chromosomes. These maize ERF (ZmERF) TFs were classified into six groups, namely groups B1 to B6, based on phylogenetic analysis. Synteny analysis showed that 50, 54, and 58 of the ZmERF genes were orthologous to those in rice, Brachypodium, and Sorghum, respectively. Cis-element analysis showed that elements related to plant growth and development, hormones, and abiotic stress were identified in the promoter region of ZmERF genes. Expression profiles suggested that ZmERF genes might participate in plant development and in response to salinity and drought stresses. Our findings lay a foundation and provide clues for understanding the biological functions of ERF TFs in maize.

20.
Materials (Basel) ; 13(2)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936365

ABSTRACT

In order to endue silk fibroin (SF) sponges with antibacterial function, positively charged poly(hexamethylene biguanide) hydrochloride (PHMB) was incorporated in SF through electrostatic interaction and by freeze-drying technique. The influence of PHMB on the structure and antibacterial activities of SF sponges was investigated. The zeta potential of SF was increased significantly when PHMB was incorporated in SF. The pores with size from 80 to 300 µm and the microscale holes in the pore walls within PHMB-loaded SF sponges provided the channels of PHMB release. The PHMB loaded in the porous sponges showed continuous and slow release for up to 20 days. Effective growth inhibition of both Escherichia coli and Staphylococcus aureus was achieved when the mass ratio of PHMB/SF was higher than 2/100. These results suggest that the porous PHMB/SF sponges have the potential to be used as a novel wound dressing for open skin wounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...