Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 12(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37107296

ABSTRACT

Mitochondrial inner membrane protein (Mitofilin/Mic60) is part of a big complex that constituent the mitochondrial inner membrane organizing system (MINOS), which plays a critical role in maintaining mitochondrial architecture and function. We recently showed that Mitofilin physically binds to Cyclophilin D, and disruption of this interaction promotes the opening of mitochondrial permeability transition pore (mPTP) and determines the extent of I/R injury. Here, we investigated whether Mitofilin knockout in the mouse enhances myocardial injury and inflammation after I/R injury. We found that full-body deletion (homozygote) of Mitofilin induces a lethal effect in the offspring and that a single allele expression of Mitofilin is sufficient to rescue the mouse phenotype in normal conditions. Using non-ischemic hearts from wild-type (WT) and Mitofilin+/- (HET) mice, we report that the mitochondria structure and calcium retention capacity (CRC) required to induce the opening of mPTP were similar in both groups. However, the levels of mitochondrial dynamics proteins involved in both fusion/fission, including MFN2, DRP1, and OPA1, were slightly reduced in Mitofilin+/- mice compared to WT. After I/R, the CRC and cardiac functional recovery were reduced while the mitochondria structure was more damaged, and myocardial infarct size was increased in Mitofilin+/- mice compared to WT. Mitofilin+/- mice exhibited an increase in the mtDNA release in the cytosol and ROS production, as well as dysregulated SLC25As (3, 5, 11, and 22) solute carrier function, compared to WT. In addition, Mitofilin+/- mice displayed an increase in the transcript of pro-inflammatory markers, including IL-6, ICAM, and TNF-α. These results suggest that Mitofilin knockdown induces mitochondrial cristae damage that promotes dysregulation of SLC25As solute carriers, leading to an increase in ROS production and reduction in CRC after I/R. These effects are associated with an increase in the mtDNA release into the cytosol, where it activates signaling cascades leading to nuclear transcription of pro-inflammatory cytokines that aggravate I/R injury.

2.
Cells ; 11(12)2022 06 11.
Article in English | MEDLINE | ID: mdl-35741025

ABSTRACT

The receptor-interacting protein kinase 3 (RIP3) has been reported to regulate programmed necrosis-necroptosis forms of cell death with important functions in inflammation. We investigated whether RIP3 translocates into mitochondria in response to renal ischemia-reperfusion (I/R) to interact with inner mitochondrial protein (Mitofilin) and promote mtDNA release into the cytosol. We found that release of mtDNA activates the cGAS-STING pathway, leading to increased nuclear transcription of pro-inflammatory markers that exacerbate renal I/R injury. Monolateral C57/6N and RIP3-/- mice kidneys were subjected to 60 min of ischemia followed by either 12, 24, or 48 h of reperfusion. In WT mice, we found that renal I/R injury increased RIP3 levels, as well as its translocation into mitochondria. We observed that RIP3 interacts with Mitofilin, likely promoting its degradation, resulting in increased mitochondria damage and mtDNA release, activation of the cGAS-STING-p65 pathway, and increased transcription of pro-inflammatory markers. All of these effects observed in WT mice were decreased in RIP3-/- mice. In HK-2, RIP3 overexpression or Mitofilin knockdown increased cell death by activating the cGAS-STING-p65 pathway. Together, this study point to an important role of the RIP3-Mitofilin axis in the initiation and development of renal I/R injury.


Subject(s)
Mitochondria , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Inflammation/metabolism , Ischemia/metabolism , Kidney/metabolism , Mice , Mitochondria/metabolism , Nucleotidyltransferases/metabolism , Reperfusion , Reperfusion Injury/metabolism
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(10): 1017-1020, 2021 Oct 10.
Article in Chinese | MEDLINE | ID: mdl-34625945

ABSTRACT

OBJECTIVE: To explore the influence of long non-coding (lnc) RNA Gm15645 on the podocyte injury in mice with diabetic nephropathy. METHODS: Male db/db mice (with Type 2 diabetes) with a genetic background of C57BLKs/J and db/m mice (healthy) born in littermates were randomly divided into three groups. db/db group was injected with lncRNAGm15645 shRNA lentivirus with a podocyte-specific marker NPHS2; db/db blank group was injected with saline, and db/db control group was injected withnon-sense lentivirus. The results of PAS staining, pathological changes of renal tissue, relative expression of GSK-3beta, and podocin expression were compared. RESULTS: lncRNAGm15 645 was overexpressed and podocin was down-regulated in the lentivirus overexpressed group. Mesangial cell proliferation, mesangial matrix hyperplasia, thickened basement membrane, widely fused foot process, and podocyte injury were observed by PAS staining. The expression of Gm15645 in the db/db group was significantly lower than that of the db/db blank group and db/db control group (P< 0.05), while the expression of podocin was higher (P< 0.05). Gm15645 was co-stained with podocin in renal tissue, and the target gene was GSK-3beta. CONCLUSION: lncRNAGm15645 may provide an early biomarker for the occurrence of podocyte injury in diabetic nephropathy. The mechanism may be related to the feedback regulation of GSK-3beta gene.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Podocytes , RNA, Long Noncoding , Animals , Diabetic Nephropathies/genetics , Glycogen Synthase Kinase 3 beta , Male , Mice , RNA, Long Noncoding/genetics
4.
Am J Transl Res ; 12(11): 7542-7564, 2020.
Article in English | MEDLINE | ID: mdl-33312388

ABSTRACT

Mitochondrial dysfunction plays a critical role in the pathophysiology of Parkinson's disease (PD). The inner mitochondrial membrane (IMM) protein, Mitofilin or Mic60, has been shown to play a key role in controlling and maintaining mitochondrial cristae morphology, and its dysregulation induces cyto-deleterious effects. Here, we investigated the mechanism underlying Mitofilin degradation in dopaminergic neuron death using N27-A cells, and Human Dopamine Neuronal Primary cells treated with PD stressors, Dopamine (DA) or Rotenone (Rot). We found that both PD stressors increased mitochondrial Parkin translocation and interaction with Mitofilin that promotes Mitofilin degradation via ubiquitination, which is responsible for reduced mitochondrial membrane potential and increased ROS production. These effects were concomitant with abnormal mitochondrial structure and increased neuronal death. DA-induced degradation of Mitofilin enhances mitochondrial calpain activity, increases the release of AIF into the cytosol, and promotes apoptosis via an AIF-PARP dependent mechanism. We found that Rot-treated cells exhibit excessive mitophagy, while DA does not trigger mitophagy. In addition, overexpressing USP30, a mitochondrial deubiquitinase, attenuated cell death induced by Rot, but not by DA-treated cells. Together, our study reveals the impact of Parkin-Mitofilin interaction in PD stressor-induced neurotoxicity, which leads to the degradation of Mitofilin, resulting in mitochondrial structural damage and dysfunction that is responsible for neuronal death by apoptosis via an AIF-PARP pathway.

5.
Front Endocrinol (Lausanne) ; 11: 579161, 2020.
Article in English | MEDLINE | ID: mdl-33193095

ABSTRACT

Introduction: Estrogen (17ß-estradiol, E2) is well-known to induce cardioprotective effects against ischemia/reperfusion (I/R) injury. We recently reported that acute application of E2 at the onset of reperfusion in vivo induces cardioprotective effects against I/R injury via activation of its non-steroidal receptor, G protein-coupled estrogen receptor 1 (GPER1). Here, we investigated the impact and mechanism underlying chronic GPER1 activation in cultured H9c2 rat cardiomyoblasts. Methods: H9c2 rat cardiomyoblasts were cultured and pretreated with the cytotoxic agent H2O2 for 24 h and incubated in the presence of vehicle (control), GPER1 agonists E2 and G1, or GPER1 agonists supplemented with G15 (GPER1 antagonist) for 48 or 96 h. After treatment, cells were collected to measure the rate of cell death and viability using flow cytometry and Calcein AM assay or MTT assay, respectively. The resistance to opening of the mitochondrial permeability transition pore (mPTP), the mitochondrial membrane potential, and ATP production was assessed using fluorescence microscopy, and the mitochondrial structural integrity was observed with electron microscopy. The levels of the phosphorylation of mammalian sterile-20-like kinase (MST1) and yes-associated protein (YAP) were assessed by Western blot analysis in whole-cell lysate, while the expression levels of mitochondrial biogenesis genes, YAP target genes, and proapoptotic genes were measured by qRT-PCR. Results: We found that after H2O2 treatment, chronic E2/G1 treatment decreased cell death effect was associated with the prevention of the S phase of the cell cycle arrest compared to control. In the mitochondria, chronic E2/G1 activation treatment preserved the cristae morphology, and increased resistance to opening of mPTP, but with little change to mitochondrial fusion/fission. Additionally, chronic E2/G1 treatment predominantly reduced phosphorylation of MST1 and YAP, as well as increased MST1 and YAP protein levels. E2 treatment also upregulated the expression levels of TGF-ß and PGC-1α mRNAs and downregulated PUMA and Bim mRNAs. Except for ATP production, all the E2 or G1 effects were prevented by the cotreatment with the GPER1 antagonist, G15. Conclusion: Together, these results indicate that chronic GPER1 activation with its agonists E2 or G1 treatment protects H9c2 cardiomyoblasts against oxidative stress-induced cell death and increases cell viability by preserving mitochondrial structure and function as well as delaying the opening of mPTP. These chronic GPER1 effects are associated with the deactivation of the non-canonical MST1/YAP mechanism that leads to genetic upregulation of cell growth genes (CTGF, CYR61, PGC-1α, and ANKRD1), and downregulation of proapoptotic genes (PUMA and Bim).


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Reperfusion Injury/prevention & control , Animals , Male , Mitochondria/pathology , Myocytes, Cardiac/pathology , Protective Agents/metabolism , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/genetics , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Serine-Threonine Kinase 3 , YAP-Signaling Proteins
6.
Am J Transl Res ; 12(7): 3412-3428, 2020.
Article in English | MEDLINE | ID: mdl-32774709

ABSTRACT

MPV17 is an inner mitochondrial membrane protein whose mutation results in mitochondrial DNA (mtDNA) depletion diseases such as neurohepatopathy. MPV17 is expressed in several organs including the liver and kidneys. Here, we investigated its role and mechanism of action in cardiac ischemia/reperfusion (I/R) injury. Using isolated hearts from wild type and Mpv17 mutant (Mpv17mut) mice, we found that mtDNA levels and normal cardiac function were similar between the groups. Furthermore, reactive oxygen species (ROS) generation, mitochondrial morphology, and calcium levels required to trigger mitochondrial permeability transition pore (mPTP) opening were all similar in normal/non-ischemic animals. However, following I/R, we found that mutant mice had poorer cardiac functional recovery and exhibited more mitochondrial structural damage. We also found that after I/R, Mpv17mut heart mitochondria did not produce more ROS than wild type hearts but that calcium retention capacity was gravely compromised. Using immunoprecipitation and mass spectrometry, we identified ATP synthase, Cyclophilin D, MIC60 and GRP75 as proteins critical to mitochondrial cristae organization and calcium handling that interact with MPV17, and this interaction is reduced by I/R. Together our results suggest that MPV17 has a protective function in the heart and is necessary for recovery following insults to the heart.

7.
Free Radic Biol Med ; 158: 181-194, 2020 10.
Article in English | MEDLINE | ID: mdl-32726689

ABSTRACT

Mitochondrial inner membrane protein (Mitofilin or Mic60) is a mitochondria-shaping protein that plays a key role in maintaining mitochondrial cristae structure and remodeling. We recently showed that Mitofilin knockdown in H9c2 myoblasts induces mitochondrial structural damage resulting in mitochondrial dysfunction that is responsible for cell death via apoptosis. Here, we investigated the role of Mitofilin regulation in ischemia/reperfusion (I/R) injury and studied the relationship between Mitofilin and Cyclophilin (CypD), a key regulator of mitochondrial permeability transition pore (mPTP) opening. C57Bl6 male mice hearts were subjected to different ischemia times (15, 30, or 45 min) followed by a 2 h reperfusion period, or 45 min ischemia followed by 0, 15, 30, 60, or 120 min reperfusion to determine the impact of ischemia or reperfusion times on Mitofilin levels and its interaction with CypD. We found that the increase in myocardial infarct size and the reduction of mitochondrial calcium retention capacity were concomitant with Mitofilin reduction as a function of ischemic duration. We also found that 15 min reperfusion after 45 min ischemia was sufficient to cause a reduction of Mitofilin levels compared to sham, while 45 min ischemia alone was not enough to cause a significant decrease of Mitofilin. We revealed that the c-terminus coiled-coiled domain of Mitofilin is important for its interaction with CypD and the deletion of this identified sequence resulted in a loss of Mitofilin-CypD link, dissipation of mitochondrial membrane potential and increase in cell death. A decrease of the levels of Mitofilin was also associated with mitochondrial structural integrity damage, increased reactive oxygen species (ROS) production, and calpain activity. Our results indicate that Mitofilin physically binds to CypD in the inner mitochondrial membrane and the disruption of this interaction may play a critical role in the increase of mitochondrial dysfunction and initiation of myocytes' death after I/R injury.


Subject(s)
Mitochondrial Membranes , Myocardial Reperfusion Injury , Animals , Ischemia/metabolism , Male , Membrane Proteins/metabolism , Mice , Mitochondria , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Reperfusion
8.
Biochem Biophys Res Commun ; 520(3): 606-611, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31623831

ABSTRACT

Ferroptosis is a distinct iron-dependent mechanism of regulated cell death recognized in cancer and ischemia/reperfusion (I/R) injury of different organs. It has been reported that molecules such as liproxstatin-1 (Lip-1) inhibit ferroptosis and promote cell survival however, the mechanisms underlying this action are not clearly understood. We investigated the role and mechanism of Lip-1 in reducing cell death in the ischemic myocardium. Using an I/R model of isolated perfused mice hearts in which Lip-1 was given at the onset of reperfusion, we found that Lip-1 protects the heart by reducing myocardial infarct sizes and maintaining mitochondrial structural integrity and function. Further investigation revealed that Lip-1-induced cardioprotection is mediated by a reduction of VDAC1 levels and oligomerization, but not VDAC2/3. Lip-1 treatment also decreased mitochondrial reactive oxygen species production and rescued the reduction of the antioxidant GPX4 caused by I/R stress. Meanwhile, mitochondrial Ca2+ retention capacity needed to induce mitochondrial permeability transition pore opening did not change with Lip-1 treatment. Thus, we report that Lip-1 induces cardioprotective effects against I/R injury by reducing VDAC1 levels and restoring GPX4 levels.


Subject(s)
Cardiotonic Agents/pharmacology , Heart/drug effects , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Quinoxalines/pharmacology , Spiro Compounds/pharmacology , Voltage-Dependent Anion Channel 1/metabolism , Animals , Antioxidants/metabolism , Calcium/metabolism , Ferroptosis/drug effects , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Myocardium/pathology , Reactive Oxygen Species/metabolism , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channels/metabolism
9.
Drug Des Devel Ther ; 13: 3009-3019, 2019.
Article in English | MEDLINE | ID: mdl-31564827

ABSTRACT

OBJECTIVE: The aim of this study was to identify the active anti-ischemic components of Pterocypsela elata (P. elata) using a network pharmacology approach to construct an effective component anti-cerebral ischemic target network and systematically analyze this medicinal material. METHODS: Pharmacological studies have shown that P. elata has an obvious effect against cerebral ischemia. To identify the potential targets, 14 components of P. elata were docked to each structural element of the targets in the DRAR-CPI database by reverse docking technology. We then compared the identified potential targets with FDA-approved targets for stroke/cerebral infarction treatment in the DrugBank database and identified the active components of P. elata and their potential targets for stroke/cerebral infarction treatment. The active component-target networks were constructed using Cytoscape 3.5.1 software. The target protein-protein interactions were analyzed using the STRING database. KEGG pathway analysis and gene ontology (GO) enrichment analysis were performed through the Database for Annotation, Visualization and Integrated Discovery (DAVID). RESULTS: There were 14 active components identified from P. elata and 21 potential targets identified for cerebral ischemia treatment, including carbonic anhydrase 2, ribosyldihydronicotinamide dehydrogenase, cholinesterase, and glutathione S-transferase P. The main involved pathways include metabolic pathways, complement and coagulation cascades and steroid hormone biosynthesis. CONCLUSION: Through a network pharmacology approach, we predicted the active components of P. elata and their potential targets for cerebral ischemia treatment. Our results provide new perspectives and clues for further studies on the anti-cerebral ischemia mechanism of P. elata.


Subject(s)
Asteraceae/chemistry , Brain Ischemia/drug therapy , Drugs, Chinese Herbal/therapeutic use , Cell Line, Tumor , Databases, Factual , Humans , Medicine, Chinese Traditional , Software
10.
Life Sci ; 235: 116841, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31494173

ABSTRACT

Indanyloxyacetic acid-94 (IAA-94), an intracellular chloride channel blocker, is shown to ablate cardioprotection rendered by ischemic preconditioning (IPC), N (6)-2-(4-aminophenyl) ethyladenosine or the PKC activator phorbol 12-myristate 13-acetate and cyclosporin A (CsA) in both ex-vivo and in-vivo ischemia-reperfusion (IR) injury. Thus signifying the role of the IAA-94 sensitive chloride channels in mediating cardio-protection upon IR injury. Although IAA-94 sensitive chloride currents are recorded in cardiac mitoplast, there is still a lack of understanding of the mechanism by which IAA-94 increases myocardial infarction (MI) by IR injury. Mitochondria are the key arbitrators of cell life and death pathways. Both oxidative stress and calcium overload in the mitochondria, elicit pathways resulting in the opening of mitochondrial permeability transition pore (mPTP) leading to cell death. Therefore, in this study we explored the role of IAA-94 in MI and in maintaining calcium retention capacity (CRC) of cardiac mitochondria after IR. IAA-94 inhibited the CRC of the isolated cardiac mitochondria in a concentration-dependent manner as measured spectrofluorimetrically using calcium green-5 N. Interestingly, IAA-94 did not change the mitochondrial membrane potential. Further, CsA a blocker of mPTP opening could not override the effect of IAA-94. We also showed for the first time that IAA-94 perfusion after ischemic event augments MI by reducing the CRC of mitochondria. To conclude, our results demonstrate that the mechanism of IAA-94 mediated cardio-deleterious effects is via modulating the mitochondria CRC, thereby playing a role in mPTP opening. These findings highlight new pharmacological targets, which can mediate cardioprotection from IR injury.


Subject(s)
Calcium/metabolism , Glycolates/adverse effects , Myocardial Infarction/metabolism , Animals , Cyclosporine/pharmacology , Dose-Response Relationship, Drug , Glycolates/antagonists & inhibitors , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Heart/metabolism , Myocardial Infarction/chemically induced , Rats
11.
J Cell Physiol ; 234(4): 3383-3393, 2019 04.
Article in English | MEDLINE | ID: mdl-30259514

ABSTRACT

The identification of the mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane shed light on the intricate components necessary for mitochondria to form their signature cristae in which many protein complexes including the electron transport chain are localized. Mic60/mitofilin has been described as the core component for the assembly and maintenance of MICOS, thus controlling cristae morphology, protein transport, mitochondrial DNA transcription, as well as connecting the inner and outer mitochondrial membranes. Although Mic60 homologs are present in many species, mammalian Mic60 is only recently gaining attention as a critical player in several organ systems and diseases with mitochondrial-defect origins. In this review, we summarize what is currently known about the ever-expanding role of Mic60 in mammals, and highlight some new studies pushing the field of mitochondrial cristae organization towards potentially new and exciting therapies targeting this protein.


Subject(s)
Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Muscle Proteins/metabolism , Animals , Humans , Mitochondria/ultrastructure , Mitochondrial Diseases/pathology , Mitochondrial Membranes/ultrastructure , Signal Transduction
12.
Am J Physiol Cell Physiol ; 315(1): C28-C43, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29489384

ABSTRACT

Mitofilin is an inner membrane protein that has been defined as a mitochondria-shaping protein in controlling and maintaining mitochondrial cristae structure and remodeling. We determined the role of mitofilin in cell survival by investigating the mechanism underlying mitofilin knockdown-induced cell death by apoptosis. Cultured H9c2 myoblasts and HEK 293 cells were treated with mitofilin siRNA or scrambled siRNA for 24 h. Cell death (apoptosis), caspase 3 activity and cell cycle phases were assessed by flow cytometry, while cytochrome c release and intracellular ATP production were measured by ELISA. Mitofilin, apoptosis-inducing factor (AIF) and poly(ADP-ribose) polymerase (PARP) expression were measured by Western blot analysis and calpain activity was assessed using a calpain activity kit. Mitochondrial images were taken using electron microscopy. We found that mitofilin knockdown increases apoptosis mainly via activation of the AIF-PARP pathway leading to nuclear fragmentation that is correlated with S phase arrest of the cell cycle. Knockdown of mitofilin also led to mitochondrial swelling and damage of cristae that is associated with the increase in reactive oxygen species production and mitochondrial calpain activity, as well as a marked decrease in intracellular ATP production and mitochondrial membrane potential. Together, these results indicate that mitofilin knockdown by siRNA increases calpain activity that presumably leads to mitochondrial structural degradation resulting in a critical reduction of mitochondrial function that is responsible for the increase in cell death by apoptosis via an AIF-PARP mechanism and associated with nuclear fragmentation, and S phase arrest of the cell cycle.


Subject(s)
Apoptosis Inducing Factor/metabolism , Apoptosis/physiology , Cell Cycle Checkpoints/physiology , Cell Death/physiology , Mitochondrial Proteins/metabolism , Muscle Proteins/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Animals , Cell Line , Cytochromes c/metabolism , HEK293 Cells , Humans , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Myoblasts/metabolism , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/metabolism , S Phase/physiology
13.
Free Radic Biol Med ; 117: 58-65, 2018 03.
Article in English | MEDLINE | ID: mdl-29253592

ABSTRACT

MIP2, one of WDR26 isoforms, encodes a 498 amino acid protein with an amino-terminal CTLH domain and five carboxyl-terminal WD40 motifs. MIP2 is localized to the mitochondria and protects cardiomyocytes against oxidative stress; however, nothing is known about how MIP2 confers its cytoprotection. Using co-immunoprecipitation (co-IP) method to isolate MIP2-protein complex from Sprague -Dawley rat heart, followed by mass spectrometry analysis, we have identified VDAC1, a protein located at mitochondria, as a novel MIP2-interacting protein in the myocardium of rat hearts as well as H9c2 cells. This interaction was further confirmed by co-IP assays in the myocardial tissues and H9c2 cardiomyocytes, and by protein overlay assay (POA) in vitro. It was shown that MIP2 overexpression alleviated the H2O2-induced increase of VDAC1 and cell damage, and MIP2 deficiency aggravated the increase of VDAC1 and cell damage in H2O2 -treated H9c2 cells. Our research suggests that the protective effect of MIP2 on the cardiomyocytes against oxidative stress is partly associated with its interaction with VDAC1 and thus inhibiting its expression.


Subject(s)
Apoptosis/physiology , Myocytes, Cardiac/metabolism , Oxidative Stress/physiology , Proteins/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Animals , Gene Expression Regulation , Rats , Rats, Sprague-Dawley
14.
Br J Pharmacol ; 174(23): 4329-4344, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28906548

ABSTRACT

BACKGROUND AND PURPOSE: Recent evidence indicates that GPER (G protein-coupled oestrogen receptor 1) mediates acute pre-ischaemic oestrogen-induced protection of the myocardium from ischaemia/reperfusion injury via a signalling cascade that includes PKC translocation, ERK1/2/ GSK-3ß phosphorylation and inhibition of the mitochondrial permeability transition pore (mPTP) opening. Here, we investigated the impact and mechanism involved in post-ischaemic GPER activation in ischaemia/reperfusion injury. We determined whether GPER activation at the onset of reperfusion confers cardioprotective effects by protecting against mitochondrial impairment and mitophagy. EXPERIMENTAL APPROACH: In vivo rat hearts were subjected to ischaemia followed by reperfusion with oestrogen (17ß-oestradiol, E2), E2 + G15, a GPER antagonist, or vehicle. Myocardial infarct size, the threshold for the opening of mPTP, mitophagy, mitochondrial membrane potential, ROS production, proteins ubiquitinated including cyclophilin D, and phosphorylation levels of ERK and GSK-3ß were measured. RESULTS: We found that post-ischaemic E2 administration to both male and female ovariectomized-rats reduced myocardial infarct size. Post-ischaemic E2 administration preserved mitochondrial structural integrity and this was associated with a decrease in ROS production and increased mitochondrial membrane potential, as well as an increase in the mitochondrial Ca2+ load required to induce mPTP opening via activation of the MEK/ERK/GSK-3ß axis. Moreover, E2 reduced mitophagy via the PINK1/Parkin pathway involving LC3I, LC3II and p62 proteins. All these post-ischaemic effects of E2 were abolished by G15 suggesting a GPER-dependent mechanism. CONCLUSION: These results indicate that post-ischaemic GPER activation induces cardioprotective effects against ischaemia/reperfusion injury in males and females by protecting mitochondrial structural integrity and function and reducing mitophagy.


Subject(s)
Estradiol/pharmacology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/drug therapy , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Calcium/metabolism , Disease Models, Animal , Estradiol/administration & dosage , Female , Glycogen Synthase Kinase 3 beta/metabolism , Male , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Mitophagy/drug effects , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Phosphorylation , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
15.
Acta Biochim Biophys Sin (Shanghai) ; 48(12): 1075-1084, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27797717

ABSTRACT

Myocardial ischemia is a heart condition caused by reduction of blood flow to the heart, preventing heart from receiving enough oxygen. Myocardial ischemia is the most common cause of death globally. Heart ischemic preconditioning (IPC) has a protective effect against myocardial cell death induced by ischemia and ischemia-reperfusion injury. WDR26 has recently been identified as a protein that is increased following rat cardiac IPC. WDR26 can promote the proliferation of H9c2 cells and protect cardiomyocytes against oxidative stress through inhibiting apoptosis. However, its role in myocardial ischemia is unclear. The aim of this study was to explore the role of WDR26 in myocardial ischemia and H9c2 cell hypoxia. Our results showed that WDR26 is induced by myocardial ischemia and H9c2 cell hypoxia. WDR26 protects H9c2 cells against hypoxia injury through inhibiting LDH release and increasing cell viability. WDR26 promotes hypoxia-induced autophagy in hypoxia of H9c2 cells. We further demonstrated that in H9c2 cell hypoxia, WDR26 increases mitochondrial membrane potential, thereby increases Parkin translocation of mitochondria. After Parkin is translocated at mitochondria, WDR26 can increase mitochondrial protein ubiquitination in hypoxia of H9c2 cells. WDR26 is a mediator of response to hypoxia, and WDR26 plays an important role in hypoxia-mediated autophagy and mitophagy. This study provides novel insights into the protective role of WDR26 in cardiomyocyte injury during hypoxia. WDR26 may serve as a potential target for the treatment of myocardial ischemia.


Subject(s)
Cell Hypoxia , Mitophagy/physiology , Myocytes, Cardiac/cytology , Proteins/physiology , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line , Membrane Potential, Mitochondrial , Myocytes, Cardiac/metabolism , Protein Transport , Rats , Rats, Sprague-Dawley
16.
Am J Cardiovasc Dis ; 6(3): 93-108, 2016.
Article in English | MEDLINE | ID: mdl-27679744

ABSTRACT

Reactive oxygen species (ROS) generation has been implicated in many pathologies including ischemia/reperfusion (I/R) injury. This led to multiple studies on antioxidant therapies to treat cardiovascular diseases but paradoxically, results have so far been mixed as ROS production can be beneficial as a signaling mechanism and in cardiac protection via preconditioning interventions. We investigated whether the differential impact of increased ROS in injury as well as in protection could be explained by their site of production on the mitochondrial electron transport chain. Using amplex red to measure ROS production, we found that mitochondria isolated from hearts after I/R produced more ROS than non-ischemic when complex I substrate (glutamate/malate) was used. Interestingly, the substrates of complex II (succinate) and ubiquinone (sn-glycerol 3-phosphate, G3P) produced less ROS in mitochondria from I/R hearts compared to normal healthy hearts. The inhibitors of complex I (rotenone) and complex III (antimycin A) increased ROS production when glutamate/malate and G3P were used; in contrast, they reduced ROS production when the complex II substrate was used. Mitochondrial calcium retention capacity required to induce mitochondrial permeability transition pore (mPTP) opening was measured using calcium green fluorescence and was found to be higher when mitochondria were treated with G3P and succinate compared to glutamate/malate. Furthermore, Langendorff hearts treated with glutamate/malate exhibited reduced cardiac functional recovery and increased myocardial infarct size compared to hearts treated with G3P. Thus, ROS production by the stimulated respiratory chain complexes I and III has opposite roles: cardio-deleterious when produced in complex I and cardio-protective when produced in complex III. The mechanism of these ROS involves the inhibition of the mPTP opening, a key event in cell death following ischemia/reperfusion injury.

17.
Cell Stress Chaperones ; 21(2): 251-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26515559

ABSTRACT

Heat shock proteins (HSPs) play important roles in cellular stress resistance. Previous reports had already suggested that HSP27 played multiple roles in preventing doxorubicin-induced cardiotoxicity. Although HSP25 might have biological functions similar to its human homolog HSP27, the mechanism of HSP25 is still unclear in doxorubicin-induced cardiomyocyte apoptosis. To investigate HSP25 biological function on doxorubicin-induced apoptosis, flow cytometry was employed to analyze cell apoptosis in over-expressing HSP25 H9c2 cells in presence of doxorubicin. Unexpectedly, the H9c2 cells of over-expressing HSP25 have no protective effect on doxorubicin-induced apoptosis. Moreover, no detectable interactions were detected by coimmunoprecipitation between HSP25 and cytochrome c, and HSP25 over-expression failed in preventing cytochrome c release induced by doxorubicin. However, down-regulation of endogenous HSP25 by a specific small hairpin RNA aggravates apoptosis in H9c2 cells. Subsequent studies found that HSP25, but not HSP90, HSP70, and HSP20, interacted with SIRT1. Knockdown of HSP25 decreased the interaction between SIRT1 and p53, leading to increased p53 acetylation on K379, up-regulated pro-apoptotic Bax protein expression, induced cytochrome c release, and triggered caspase-3 and caspase-9 activation. These findings indicated a novel mechanism by which HSP25 regulated p53 acetylation through dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Apoptosis/drug effects , Doxorubicin/toxicity , HSP27 Heat-Shock Proteins/metabolism , Myocytes, Cardiac/drug effects , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylation/drug effects , Animals , Cell Line , Cytochromes c/metabolism , HSP27 Heat-Shock Proteins/genetics , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA Interference , RNA, Small Interfering/genetics , Rats
18.
Zhonghua Zhong Liu Za Zhi ; 37(5): 352-5, 2015 May.
Article in Chinese | MEDLINE | ID: mdl-26463025

ABSTRACT

OBJECTIVE: To investigate the expression of IFITM3 in colorectal carcinoma and its clinical significance. METHODS: 213 patients with colon ademocarcinoma and 214 patients with colon adenoma treated by surgery in our hospital from March 2008 to June 2010 were included in this study. The levels of IFITM3 in normal colon nucosa, adenoma, and adenocarcinoma tissues were detected by real-time PCR and immunochemistry, and its relationship with metastasis and prognosis in 213 colorectal cancer patients was analyzed. RESULTS: The IFITM3 mRNA level in metastatic tumor group was 18.37 ± 0.61, significantly higher than that in the normal 4.49 ± 0.69 and non-metastases groups (7.32 ± 0.76; F = 460.380, P < 0.001). The positive rate of IFITM3 protein expression in metastatic tumor group (69.0%) was significantly higher than that in the normal (3.9%), non-metastasies groups (19.0%) and adenoma groups (11.3%). Our clinical analysis confirmed that the IFITM3 expression was associated with peritumoral invasion, hepatic metastases, metastases of para-colonic lymph nodes, mesocolonic lymph nodes and mesenteric root lymph nodes, omental metastasis and AJCC classification (P < 0.05). Furthermore, the survival curve analysis showed that patients with lower IFITM3 level expression had a higher 5-year survival rate (88.8%) than that in the patients with higher expression (40.2%, P < 0.001). CONCLUSIONS: IFITM3 expression has a positive correlation with metastasis and prognosis in patients with colorectal carcinoma.


Subject(s)
Adenocarcinoma/metabolism , Colorectal Neoplasms/metabolism , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Adenocarcinoma/diagnosis , Adenoma , Colorectal Neoplasms/diagnosis , Humans , Liver Neoplasms/metabolism , Membrane Proteins/genetics , Neoplasms , Peritoneal Neoplasms , Prognosis , RNA, Messenger , RNA-Binding Proteins/genetics , Real-Time Polymerase Chain Reaction , Survival Analysis , Survival Rate
19.
Am J Cardiovasc Dis ; 5(2): 127-39, 2015.
Article in English | MEDLINE | ID: mdl-26309776

ABSTRACT

There is discrepancy regarding the duration of reperfusion required using 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) staining to assess myocardial infarction in an isolated, perfused heart model. Several investigators prefer long-term reperfusion (120 minutes) to determine myocardial injury, while others have used a shorter duration (30-40 minutes). We investigated whether oxygen surrounding the myocardium during ischemia plays a critical role in the installation of myocardial infarction during reperfusion. Mice hearts were perfused with a Langendorff apparatus using Krebs Henseleit (KH) buffer oxygenated with 95% O2 plus 5% CO2 at 37°C. Hearts were either immersed in KH or suspended in air during 18 minutes of global ischemia in a normothermic, water-jacketed chamber. Hearts then were reperfused for 40, 60, or 90 minutes. We found that hearts immersed in KH had decreased recovery of function and increased myocardial infarct size, reaching a steady-state level after 40 minutes of reperfusion. In contrast, hearts suspended in air approached steady-state after 90 minutes of reperfusion. Thus, mitochondrial reactive oxygen species (ROS) production was much lower in air-maintained hearts than in KH-immersed hearts. To investigate whether an increase in oxygen surrounding the myocardium during ischemia might cause further damage, we bubbled the KH solution with nitrogen (KH+N2) rather than oxygen (KH+O2). With this alteration, recovery of cardiac function was improved and myocardial infarct size and mitochondrial ROS production were reduced compared with hearts immersed in KH+O2. In conclusion, short-term (40 minutes) reperfusion is sufficient to reach steady-state myocardial infarct size when hearts are immersed in physiologic solution during ischemia; however, a longer duration of reperfusion (90 minutes) is required if hearts are suspended in air. Thus, oxygen surrounding the heart during ischemia determines the extent of myocardium injury during reperfusion.

20.
PLoS One ; 9(8): e105991, 2014.
Article in English | MEDLINE | ID: mdl-25166914

ABSTRACT

The aberrant expression of microRNAs (miRNAs) is associated with colorectal carcinogenesis, but the underlying mechanisms are not clear. This study showed that the miRNA-27a (miR-27a) was significantly reduced in colorectal cancer tissues and colorectal cancer cell lines, and that the reduced miR-27a was associated with distant metastasis and colorectal cancer clinical pathological stages-miR-27a was lower at stages III/IV than that at stage II. Bioinformatic and systemic biological analysis predicted several targets of miR-27a, among them SGPP1 and Smad2 were significantly affected. SGPP1 and Smad2 at mRNA and protein levels were negatively correlated with miR-27a in human colorectal cancer tissues and cancer cell lines. Increased miR-27a significantly repressed SGPP1 and Smad2 at transcriptional and translational levels. Functional studies showed that increasing miR-27a inhibited colon cancer cell proliferation, promoted apoptosis and attenuated cell migration, which were also linked to downregulation of p-STAT3 and upregulation of cleaved caspase 3. In vivo, miR-27a inhibited colon cancer cell growth in tumor-bearing mice. Taken together, this study has revealed miR-27a as a tumor suppressor and has identified SGPP1 and Smad2 as novel targets of miR-27a, linking to STAT3 for regulating cancer cell proliferation, apoptosis and migration in colorectal cancer. Therefore, miR-27a could be a useful biomarker for monitoring colorectal cancer development and progression, and also could have a therapeutic potential by targeting SGPP1, Smad2 and STAT3 for colorectal cancer therapy.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Membrane Proteins/genetics , MicroRNAs/genetics , Phosphoric Monoester Hydrolases/genetics , Smad2 Protein/genetics , Animals , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/metabolism , Computational Biology/methods , HCT116 Cells , Humans , Membrane Proteins/metabolism , Mice, Inbred C57BL , Neoplasm Metastasis , Neoplasm Transplantation , Phosphoric Monoester Hydrolases/metabolism , Smad2 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL