Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
2.
J Chromatogr Sci ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751210

ABSTRACT

As storage time increases, the quality of traditional Chinese medicines (TCMs) may change, and stability is an essential aspect of ensuring the safety and efficacy of TCMs. In this study, the effects of different storage times on the stability of 12 decoction pieces were evaluated. High-performance liquid chromatography was used to determine the contents of the active components in the 12 decoction pieces. The chemical composition data were analyzed using fingerprinting and clustering heatmap (CH). Results showed that during storage, significant variations (relative standard deviation > 10%) were observed in the levels of paeoniflorin in Paeoniae Radix Alba and Paeoniae Radix Rubra, hesperidin in Citri Reticulatae Pericarpium and Citri Reticulatae Pericarpium Viride, bufothionine in Siccus Bufo and chlorogenic acid in White Chrysanthemi Flos and Lonice Raejaponicae Caulis. However, calycosin-7-glucoside and calycosin in Astragali Radix Praeparata Cum Melle and chlorogenic acid in Lonicerae Japonicae Flos, Yellow Chrysanthemi Flos and Mori Folium were all <10%, which is consistent with the CH. Decoction pieces can be stored for up to six months, but it is recommended that volatile oil-containing and animal-based decoction pieces should not be stored for more than one month. This study provides new perspectives for the stability and quality control studies of TCM.

3.
Sci Total Environ ; 927: 172110, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565348

ABSTRACT

Recently, it is reported that bacterial communication coordinates the whole consortia to jointly resist the adverse environments. Here, we found the bacterial communication inevitably distinguished bacterial adaptation among different species in partial nitrification reactor under decreasing temperatures. We operated a partial nitrification reactor under temperature gradient from 30 °C to 5 °C and found the promotion of bacterial communication on adaptation of ammonia-oxidizing bacteria (AOB) was greater than that of nitrite-oxidizing bacteria (NOB). Signal pathways with single-component sensing protein in AOB can regulate more genes involved in bacterial adaptation than that with two-component sensing protein in NOB. The negative effects of bacterial communication, which were seriously ignored, have been highlighted, and Clp regulator downstream diffusible signal factor (DSF) based signal pathways worked as transcription activators and inhibitors of adaptation genes in AOB and NOB respectively. Bacterial communication can induce differential adaptation through influencing bacterial interactions. AOB inclined to cooperate with DSF synthesis bacteria as temperature declined, however, cooperation between NOB and DSF synthesis bacteria inclined to get weakening. According to the regulatory effects of signal pathways, bacterial survival strategies for self-protection were revealed. This study hints a potential way to govern niche differentiation in the microbiota by bacterial communication, contributing to forming an efficient artificial ecosystem.


Subject(s)
Bioreactors , Nitrification , Bioreactors/microbiology , Bacteria/metabolism , Adaptation, Physiological , Ammonia/metabolism , Bacterial Physiological Phenomena
4.
Water Res ; 254: 121381, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442606

ABSTRACT

The role of ray radiation from the sunlight acting on organisms has long-term been investigated. However, how the light with different wavelengths affects nitrification and the involved nitrifiers are still elusive. Here, we found more than 60 % of differentially expressed genes (DEGs) in nitrifiers were observed under irradiation of blue light with wavelengths of 440-480 nm, which were 13.4 % and 20.3 % under red light and white light irradiation respectively. Blue light was more helpful to achieve partial nitrification rather than white light or red light, where ammonium oxidization by ammonia-oxidizing archaea (AOA) with the increased relative abundance from 8.6 % to 14.2 % played a vital role. This was further evidenced by the enhanced TCA cycle, reactive oxygen species (ROS) scavenge and DNA repair capacity in AOA under blue-light irradiation. In contrast, nitrite-oxidizing bacteria (NOB) was inhibited severely to achieve partial nitrification, and the newly discovered encoded blue light photoreceptor proteins made them more sensitive to blue light and hindered cell activity. Ammonia-oxidizing bacteria (AOB) expressed genes for DNA repair capacity under blue-light irradiation, which ensured their tiny impact by light irradiation. This study provided valuable insights into the photosensitivity mechanism of nitrifiers and shed light on the diverse regulatory by light with different radiation wavelengths in artificial systems, broadening our comprehension of the nitrogen cycle on earth.


Subject(s)
Ammonia , Nitrification , Ammonia/metabolism , Soil , Oxidation-Reduction , Soil Microbiology , Phylogeny , Archaea/genetics , Archaea/metabolism
5.
Food Chem ; 446: 138815, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428087

ABSTRACT

In this study, we developed a process combining dilute alkali (NaOH or NaHCO3) and physical (disk milling and/or ball milling) treatments to improve the functionality and fermentability of corn fiber. The results showed that combining chemical with physical processes greatly improved the functionality and fermentability of corn fiber. Corn fiber treated with NaOH followed by disk milling (NaOH-DM-CF) had the highest water retention (19.5 g/g), water swelling (38.8 mL/g), and oil holding (15.5 g/g) capacities. Moreover, NaOH-DM-CF produced the largest amount (42.9 mM) of short-chain fatty acid (SCFA) during the 24-hr in vitro fermentation using porcine fecal inoculum. In addition, in vitro fermentation of NaOH-DM-CF led to a targeted microbial shifting to Prevotella (genus level), aligning with a higher fraction of propionic acid. The outstanding functionality and fermentability of NaOH-DM-CF were attributed to its thin and loose structure, decreased ester linkages and acetyl groups, and enriched structural carbohydrate exposure.


Subject(s)
Dietary Fiber , Gastrointestinal Microbiome , Animals , Swine , Dietary Fiber/analysis , Zea mays/chemistry , Alkalies , Sodium Hydroxide , Animal Feed/analysis , Feces/chemistry , Fatty Acids, Volatile/analysis , Water/analysis , Fermentation
6.
Ecotoxicol Environ Saf ; 271: 115970, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218108

ABSTRACT

The ubiquitous presence of Microplastics (MPs) in various environments documented in recent years has recently raised significant concerns about their toxic effects. While macrophages serve as the first line of defense against toxic substances and pathogens, the impact and mechanisms of microplastics on these immune cells remain unclear. This study aims to explore whether MPs induce macrophage apoptosis through the promotion of reactive oxygen species (ROS) generation and alterations in metabolic profiles. The viability of RAW264.7 cells decreased as the concentration of 0.5 µm or 5 µm MPs ranged from 0.2 to 1.5 mg/mL, with a more pronounced effect observed in the 0.5 µm MPs group. Zebrafish exposed to 0.5 µm or 5 µm MPs at a concentration of 0.5 mg/mL exhibited decreased macrophage abundance and increased apoptosis, accompanied by alterations in the expression of inflammatory and apoptosis-related genes. While 0.5 µm MPs were observed to enter macrophages, 5 µm MPs only adhered to the cell membrane surface. Both particle sizes induced ROS generation and disrupted cellular metabolism in RAW264.7 cells. Notably, macrophages exhibited a more pronounced response to 0.5 µm MPs, characterized by heightened ROS generation, increased secretion of pro-inflammatory mediators, and a significant decrease in sphingolipid metabolism. These findings suggest that the adverse effects on macrophages are greater with 0.5 µm MPs compared to 5 µm MPs, possibly attributed to particle size effects. This study contributes additional evidence on the impact of MPs on human immune cells.


Subject(s)
Microplastics , Plastics , Humans , Animals , Microplastics/toxicity , Reactive Oxygen Species , Zebrafish , Macrophages , Apoptosis , Metabolome , Polystyrenes
7.
Sci Total Environ ; 914: 169975, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38218496

ABSTRACT

Recently, photogranules composed of bacteria and microalgae for carbon-negative nitrogen removal receive extensive attention worldwide, yet which type of bacteria is helpful for rapid formation of photogranules and whether they depend on signaling communication remain elusive. Varied signaling communication was analyzed using metagenomic method among bacteria and microalgae in via of two types of experimentally verified signaling molecule from bacteria to microalgae, which include indole-3-acetic acid (IAA) and N-acyl homoserine lactones (AHLs) during the operation of photo-bioreactors. Signaling communication is helpful for the adaptability of bacteria to survive with algae. Compared with non-signaling bacteria, signaling bacteria more easily adapt to the varied conditions, evidenced by the increased abundance in the operated reactors. Signaling bacteria are easier to enter the phycosphere, and they dominate the interactions between bacteria and algae rather than non-signaling bacteria. The co-abundance groups (CAGs) with signaling bacteria possess higher abundance than that without signaling bacteria (22.27 % and 6.67 %). Importantly, signaling bacteria accessibly interact with microalgae, which possess higher degree centralities and 32.50 % of them are keystone nodes in the network, in contrast to only 18.66 % of non-signaling bacteria. Thauera carrying both IAA and AHLs synthase genes are highly enriched and positively correlated with nitrogen removal rate. Our work not only highlights the essential roles of signaling communication between microalgae and bacteria in the development of photogranules, but also enriches our understanding of microbial sociobiology.


Subject(s)
Microalgae , Quorum Sensing , Bacteria , Acyl-Butyrolactones , Communication
8.
Nat Nanotechnol ; 19(4): 463-470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38168927

ABSTRACT

Due to their high optical transparency and electrical conductivity, indium tin oxide thin films are a promising material for photonic circuit design and applications. However, their weak optical nonlinearity has been a substantial barrier to nonlinear signal processing applications. In this study, we show that an atomically thin (~1.5 nm) indium tin oxide film in the form of an air/indium tin oxide/SiO2 quantum well exhibits a second-order susceptibility χ2 of ~1,800 pm V-1. First-principles calculations and quantum electrostatic modelling point to an electronic interband transition resonance in the asymmetric potential energy of the quantum well as the reason for this large χ2 value. As the χ2 value is more than 20 times higher than that of the traditional nonlinear LiNbO3 crystal, our indium tin oxide quantum well design can be an important step towards nonlinear photonic circuit applications.

9.
Environ Sci Technol ; 57(44): 16953-16963, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37886803

ABSTRACT

Photogranules are dense algal-bacterial aggregates used in aeration-free and carbon-negative wastewater treatment, wherein filamentous cyanobacteria (FC) are essential components. However, little is known about the functional role of symbiotic bacteria in photogranulation. Herein, we combined cyanobacterial isolation, reactor operation, and multiomics analysis to investigate the cyanobacterial-bacterial interaction during photogranulation. The addition of FC to the inoculated sludge achieved a 1.4-fold higher granule size than the control, and the aggregation capacity of FC-dominant photogranules was closely related to the extracellular polysaccharide (PS) concentration (R = 0.86). Importantly, we found that cross-feeding between FC and symbiotic bacteria for macromolecular PS synthesis is at the heart of photogranulation and substantially enhanced the granular stability. Chloroflexi-affiliated bacteria intertwined with FC throughout the photogranules and promoted PS biosynthesis using the partial nucleotide sugars produced by FC. Proteobacteria-affiliated bacteria were spatially close to FC, and highly expressed genes for vitamin B1 and B12 synthesis, contributing the necessary cofactors to promote FC proliferation. In addition, Bacteroidetes-affiliated bacteria degraded FC-derived carbohydrates and influenced granules development. Our metabolic characterization identified the functional role of symbiotic bacteria of FC during photogranulation and shed light on the critical cyanobacterial-bacterial interactions in photogranules from the viewpoint of cross-feeding.


Subject(s)
Chloroflexi , Cyanobacteria , Wastewater , Bioreactors , Sewage , Waste Disposal, Fluid
10.
Environ Sci Technol ; 57(40): 15087-15098, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37754765

ABSTRACT

Bacteria are often exposed to long-term starvation during transportation and storage, during which a series of enzymes and metabolic pathways are activated to ensure survival. However, why the surface color of the bacteria changes during starvation is still not well-known. In this study, we found black anammox consortia suffering from long-term starvation contained 0.86 mmol gVSS-1 cytochrome c, which had no significant discrepancy compared with the red anammox consortia (P > 0.05), indicating cytochrome c was not the key issue for chromaticity change. Conversely, we found that under starvation conditions cysteine degradation is an important metabolic pathway for the blackening of the anammox consortia for H2S production. In particular, anammox bacteria contain large amounts of iron-rich nanoparticles, cytochrome c, and other iron-sulfur clusters that are converted to produce free iron. H2S combines with free iron in bacteria to form Fe-S compounds, which eventually exist stably as FeS2, mainly in the extracellular space. Interestingly, FeS2 could be oxidized by air aeration, which makes the consortia turn red again. The unique self-protection mechanism makes the whole consortia appear black, avoiding inhibition by high concentrations of H2S and achieving Fe storage. This study expands the understanding of the metabolites of anammox bacteria as well as the bacterial survival mechanism during starvation.

11.
Water Res ; 241: 120144, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37300965

ABSTRACT

Photogranules composed of algae, nitrifiers, and anammox bacteria are promising for nitrogen removal from wastewater with reduced aeration and carbon emissions. However, it is difficult to be achieved as the potential inhibition of anammox bacteria by light. In this study, a syntrophic algal-partial nitrification/anammox granular sludge process was developed, with a nitrogen removal rate of 294.5 mg N/(L·d). We found the symbiosis in the community promoted the adaptation of anammox bacteria under light, and cross-feeding played an important role. Microalgae in the outer layers of photogranules sheltered most of the light and supplied cofactors and amino acids to promote nitrogen removal. In particular, Myxococcota MYX1 degraded the extracellular proteins produced by microalgae, providing amino acids to the entire bacterial community, which helped anammox bacteria save metabolic energy and adapt to light. Notably, the anammox bacteria Candidatus Brocadia exhibited unique light-sensing potential and adaptations to light irradiation compared with Candidatus Jettenia, including diverse DNA repair, scavenging of reactive oxygen species, cell movement. The phytochrome-like proteins encoded by Candidatus Brocadia further facilitated their spatial positioning and niche partitioning in photogranules. This study provides insights into the response of anammox bacteria in the algae-bacteria symbiosis system and suggests its potential application for carbon-negative nitrogen removal.


Subject(s)
Anaerobic Ammonia Oxidation , Bioreactors , Bioreactors/microbiology , Oxidation-Reduction , Wastewater , Sewage/microbiology , Nitrification , Bacteria/metabolism , Nitrogen/metabolism , Denitrification
12.
Eur J Radiol ; 162: 110784, 2023 May.
Article in English | MEDLINE | ID: mdl-36958125

ABSTRACT

PURPOSE: To evaluate whether relative Hounsfield unit attenuation index (rHUAI) on contrast-enhanced computed tomography (CECT) can predict tumor response in advanced hepatocellular carcinoma (HCC) patients who received sequential combined treatment of immune checkpoint inhibitor (ICI) and anti-angiogenesis therapy. METHOD: One hundred seventeen advanced HCC patients who underwent the sequential combined treatment in a tertiary hospital between March 2020 and December 2021 were allocated to prediction and validation cohorts (with a ratio of 2:1) based on the time of initial ICI treatment. rHUAI from the arterial to the portal-venous phase (rHU_ap) and from the portal-venous to the delayed phase (rHU_pd) was calculated. The optimal cut-off values (COVs) of rHU_ap and rHU_pd for predicting tumor response were identified using Youden's index. Univariate and multivariable analyses were performed to assess the relationship between the COVs and tumor response. The validity of COVs was verified in the validation cohort using the chi-square test and Cramer's V coefficient (V). RESULTS: The optimal COVs of the two observers were 0.5316 and 0.3265 for rHU_ap, and -0.0208 and -0.0048 for rHU_pd, respectively. Multivariable analysis suggested that the COVs were independently associated with tumor response in the prediction cohort (rHU_ap, Odds ratio: 7.727 and 7.808, 95 % CI: 2.516-23.728 and 2.399-25.410, p value < 0.001 and 0.001; rHU_pd, Odds ratio: 0.034 and 0.011, 95 % CI: 0.002-0.600 and 0.001-0.209, p value of 0.021 and 0.003). In the validation cohort, the optimal COVs of rHU_ap had a moderate to a strong association with tumor response (V = 0.362-0.545, p < 0.05). The association between COVs of rHU_pd and tumor response was slight to strong (V = 0.24-0.545, p = 0.001 to 0.134). CONCLUSION: rHUAI obtained from CECT has the potential as a non-invasive tool for predicting tumor response in advanced HCC patients who have received combined ICI and anti-angiogenesis treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Tomography, X-Ray Computed/methods , Combined Modality Therapy
14.
Foods ; 12(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36766143

ABSTRACT

Fish products are consumed by human beings as a high-quality protein source. However, overfishing, and pollution puts out an urgent call to seek a new strategy to substitute fish protein for secure eco-sustainability. Plant-based fish analogs, which mimic the structure, texture, and flavor of fish meat products, are a rapid-growing segment of the food products. The purpose of this review is to discuss the feasibility and potential strategies for developing plant-based fish analog. The nutritional properties, especially the protein quality of plant-based fish analogs, were discussed. Furthermore, a thorough comparison was made between fish and terrestrial animal muscle structures, including both macroscopical and microscopical structures. Potential processing technologies for producing plant-based fish analogs from plant proteins and approaches for the characterization of the fish analog structures were elaborated. Comparing all the current processing techniques, extrusion is the predominately used technique in the current industry. At the same time, 3D-printing and electrospinning have shown the prominent potential of mimicking fish muscle structure as bottom-up approaches. Finally, key challenges and future research were discussed for the potential commercialization of plant-based fish analogues. The primary focus of this review covers the innovative works that were indexed in the Web of Science Core Collection in the past five years.

15.
Front Pharmacol ; 14: 1095721, 2023.
Article in English | MEDLINE | ID: mdl-36762118

ABSTRACT

Background: Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease (IBD). The conventional drugs for UC may induce severe side effects. Herbal medicine is considered as a complementary and alternative choice for UC. Purpose: This study aims to estimate the effect of natural polyphenol gallic acid (GA) on the NLRP3 inflammasome with dextran sulfate sodium (DSS)-induced colitis in mice. Study design: The body weights and symptoms of BALB/c mice were recorded. Histological evaluation, ELISA, q-PCR, immunohistochemistry, and western blotting were carried out to observe the morphology, cytokine contents, mRNA expressions, and protein expressions, respectively. Lipopolysaccharide (LPS)-induced RAW264.7 macrophage was used to probe GA's effect on relative protein expression. Results: GA attenuated weight loss (p < 0.05), relieved symptoms, and ameliorated colonic morphological injury (p < 0.05) in mice with colitis induced by DSS. GA also lowered the contents of TNF-α, IL-1ß, IL-18, IL-33, and IFN-γ in the serum and colon of mice, which were elevated by DSS, downregulated protein, and mRNA expressions of the NLRP3 pathway in the colon tissue. Furthermore, GA downregulated the expressions of NLRP3 (p < 0.05), iNOS (p < 0.01), COX2 (p < 0.01), and P-p65 (p < 0.05), and suppressed NO release (p < 0.001) in LPS-induced RAW264.7 cells. Conclusion: GA ameliorated DSS-induced UC in mice via inhibiting the NLRP3 inflammasome. These findings furnish evidence for the anti-inflammatory effect of herbal medicines containing GA on UC.

16.
Water Res ; 231: 119589, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36645941

ABSTRACT

Metabolic cross-feeding, in which species use metabolites of other members to promote their own growth, is vital for bacterial growth and survival. Thus, whether the unculturable bacteria can be isolated or purified from consortia by adding these essential metabolites remains elusive. In this study, mass spectrometry imaging vividly pictured symbionts supplied folate and gluconate to anammox bacteria to support their growth. After dosing folate and gluconate, the relative abundance and activity of anammox bacteria were substantially improved. Such enhancement is originated from the added folate and gluconate significantly eased metabolic burden of anammox bacteria as they no longer secreted the extracellular public goods to others for "resource exchange" during cross-feedings. On the other hand, the decreased supplement of extracellular "public goods" lead to the decay of symbionts with high demand for these metabolites in the consortia. This also deservedly increased the relative abundance of anammox bacteria. This study provides a new dimension to isolate specific functional bacteria based on metabolic cross-feedings.


Subject(s)
Bacteria , Nitrogen , Oxidation-Reduction , Bacteria/metabolism , Nitrogen/metabolism , Bioreactors , Anaerobiosis
17.
Sci Total Environ ; 868: 161659, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36657689

ABSTRACT

The rapid start-up and stable operation of one-stage (Partial nitrification/anammox) PN/A process for low-ammonium wastewater are difficult to be achieved, and many carriers are designed to solve this problem. Here, a composite carrier was developed, in which sepiolite and non-woven fabrics were assembled in polypropylene spherical shells. At the start-up phase, PA reactor using the composite carriers reached a higher nitrogen removal rate of 134.50 ± 19.60 mg·N·L-1d-1, in contrast to that of 48.85 ± 19.64 mg·N·L-1d-1 in the PB reactor without sepiolite carriers. When the final influent ammonium concentration of PN/A process is 100 mg/L, the total nitrogen removal efficiency can reach 72 ± 0.03 %. High biomass immobilization ability of composite carrier was evidenced by the greater adsorption trend between sludge and sepiolite than that between sludge and non-woven fabrics, where hydrophobic interaction and Van der Waals interaction played a major role. Extracellular protein (PN) content and the ratio of PN and extracellular polysaccharide of samples in PA were significantly higher than those in PB, verifying higher biofilm formation ability on the composite carrier. The composite carrier also increased the abundance of dominant bacteria in PN/A process, especially AOB, the relative abundance of which reached 46.11 %. And it increased the abundance of essential functional genes for nitrogen conversion as their perfect acid neutralizing effects. This study is of great significance in improving the start-up speed and stable operation of this process.


Subject(s)
Ammonium Compounds , Nitrification , Sewage , Denitrification , Bacterial Adhesion , Nitrogen , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Bioreactors
18.
Chemosphere ; 311(Pt 2): 137131, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36336018

ABSTRACT

An origin Fenton-like system was discussed for the abatement of refractory contaminants. Sodium percarbonate (SPC) was utilized as the source of H2O2 and crystal boron (C-boron) was applied to enhance the activation of H2O2. Under the conditions of 0.50 mM Fe3+, 0.34 mM SPC, and heterogeneous catalysis using 100 mg L-1 C-boron, four target pollutants, at the initial concentrations of 20 µM, could be efficiently degraded by the Fenton-like system, with a degradation rate within 20 min up to 81.1% (aspirin, ASA), 92.8% (nitrobenzene, NB), 94.7% (flunixin meglumine, FMME), and 94.3% (benzoic acid, BA) respectively and total organic carbon removal up to 25.0%. The increase of Fe2+ concentration indicated that the conversion of Fe2+/Fe3+ was remarkably promoted by C-boron. Degradation reactions at acidic pH were comparatively fast, with pH-dependent kobs of 9.9 × 10-2 min-1 (ASA), 1.5 × 10-1 min-1 (NB), 1.7 × 10-1 min-1 (FMME), and 1.9 × 10-1 min-1 (BA), whereas those at neutral and alkaline pH were slower. Furthermore, reactive oxygen species including ·OH, 1O2, and O2·- were identified by in-situ electron paramagnetic resonance tests. The contribution ratios of ·OH turned out to be about 71.3-86.7% for the decomposition of four contaminants. The elimination of natural organic matter and the performance of material recycling highlighted the potential for its application in water treatment. The inhibition rate of Chlorella pyrenoidosa reached 211.9% in the C-boron/Fe3+/SPC system. The relatively high algae toxicity limited its application scope, which requires additional research to resolve.

19.
Foods ; 12(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38231647

ABSTRACT

As the global population approaches 10 billion by 2050, the critical need to ensure food security becomes increasingly pronounced. In response to the urgent problems posed by global population growth, our study adds to the growing body of knowledge in the field of alternative proteins, entomophagy, insect-based bioactive proteolysates, and peptides. It also provides novel insights with essential outcomes for guaranteeing a safe and sustainable food supply in the face of rising global population demands. These results offer insightful information to researchers and policymakers tackling the intricate relationship between population expansion and food supplies. Unfortunately, conventional agricultural practices are proving insufficient in meeting these demands. Pursuing alternative proteins and eco-friendly food production methods has gained urgency, embracing plant-based proteins, cultivated meat, fermentation, and precision agriculture. In this context, insect farming emerges as a promising strategy to upcycle agri-food waste into nutritious protein and fat, meeting diverse nutritional needs sustainably. A thorough analysis was conducted to evaluate the viability of insect farming, investigate insect nutrition, and review the techniques and functional properties of protein isolation. A review of peptide generation from insects was conducted, covering issues related to hydrolysate production, protein extraction, and peptide identification. The study addresses the nutritional value and global entomophagy habits to elucidate the potential of insects as sources of peptides and protein. This inquiry covers protein and hydrolysate production, highlighting techniques and bioactive peptides. Functional properties of insect proteins' solubility, emulsification, foaming, gelation, water-holding, and oil absorption are investigated. Furthermore, sensory aspects of insect-fortified foods as well as challenges, including Halal and Kosher considerations, are explored across applications. Our review underscores insects' promise as sustainable protein and peptide contributors, offering recommendations for further research to unlock their full potential.

20.
ERJ Open Res ; 8(4)2022 Oct.
Article in English | MEDLINE | ID: mdl-36545213

ABSTRACT

Background: Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is essential life support in patients with severe acute hypoxaemic respiratory failure. However, biopsies should be considered for some patients with unknown aetiology. This study aims to evaluate the feasibility of transbronchial lung cryobiopsy (TBLC) in such patients. Methods: All patients with acute hypoxaemic respiratory failure of unknown aetiology who underwent TBLC with VV-ECMO support were retrospectively reviewed. Patients' characteristics, ventilation settings, procedure parameters, complications, pathological diagnosis and survival were summarised and analysed. Results: Eight female and five male patients with VV-ECMO support underwent TBLC. The median age was 58 (interquartile range (IQR) 38-67) years old. Concurrent diseases were present in 10 of the 13 patients, seven of which were immunosuppressed. The median time between biopsy and VV-ECMO establishment was 2.0 (IQR 0.5-6.5) days. No patient died from the procedure. Neither pneumothorax nor severe bleeding occurred in any of the patients. Five of the 13 patients experienced moderate bleeding, and all bleeding events were successfully controlled with prophylactic balloon blockers. Pathological diagnosis by TBLC was obtained in all patients, and the diagnosis of diffuse alveolar damage was made in nine of them. Conclusions: In patients with VV-ECMO support, the TBLC procedure is generally safe when standardised bleeding prophylaxis is in place. TBLC contributes to identifying underlying aetiologies in patients with acute hypoxaemic respiratory failure of unknown aetiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...