Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Kidney Dis (Basel) ; 10(2): 143-152, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751795

ABSTRACT

Background: Chimeric antigen receptor (CAR)-T cell therapy represents a significant advancement in the field of immunotherapy, providing targeted eradication of abnormal cells through the recognition between CAR and target antigens. This approach has garnered considerable attention due to its promising results in the clinical treatment of hematological malignancies and autoimmune diseases. As the focus shifts toward exploring novel targets and expanding the application of CAR-T cell therapy to solid tumors, including renal malignancies, researchers are pushing the boundaries of this innovative treatment. However, it is crucial to address the observed comorbidities associated with CAR-T cell therapy, particularly nephrotoxicity, due to the superseding release of cytokines and impairment of normal tissue. Summary: Our review discusses the research strategies and nephrotoxicity related to CAR-T cell therapy in various kidney-related diseases and provides insights into enhancing investigation and optimization. Key Messages: CAR-T cell therapy has captured the attention of researchers and clinicians in the treatment of renal malignancies, multiple myeloma, systemic lupus erythematosus, and acquired immunodeficiency syndrome, which may lead to potential nephrotoxicity as they involve primary or secondary kidney complications. Understanding and summarizing the current research progress of CAR-T cell therapies can provide valuable insights into novel targets and combinations to optimize research models and enhance their clinical value.

2.
N Engl J Med ; 390(16): 1467-1480, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38657244

ABSTRACT

BACKGROUND: Patients with relapsed or refractory hematologic cancers have a poor prognosis. Chimeric antigen receptor (CAR) T-cell therapy as a bridge to allogeneic hematopoietic stem-cell transplantation (HSCT) has the potential for long-term tumor elimination. However, pre-HSCT myeloablation and graft-versus-host disease (GVHD) prophylaxis agents have toxic effects and could eradicate residual CAR T cells and compromise antitumor effects. Whether the integration of CAR T-cell therapy and allogeneic HSCT can preserve CAR T-cell function and improve tumor control is unclear. METHODS: We tested a novel "all-in-one" strategy consisting of sequential CD7 CAR T-cell therapy and haploidentical HSCT in 10 patients with relapsed or refractory CD7-positive leukemia or lymphoma. After CAR T-cell therapy led to complete remission with incomplete hematologic recovery, patients received haploidentical HSCT without pharmacologic myeloablation or GVHD prophylaxis drugs. Toxic effects and efficacy were closely monitored. RESULTS: After CAR T-cell therapy, all 10 patients had complete remission with incomplete hematologic recovery and grade 4 pancytopenia. After haploidentical HSCT, 1 patient died on day 13 of septic shock and encephalitis, 8 patients had full donor chimerism, and 1 patient had autologous hematopoiesis. Three patients had grade 2 HSCT-associated acute GVHD. The median follow-up was 15.1 months (range, 3.1 to 24.0) after CAR T-cell therapy. Six patients remained in minimal residual disease-negative complete remission, 2 had a relapse of CD7-negative leukemia, and 1 died of septic shock at 3.7 months. The estimated 1-year overall survival was 68% (95% confidence interval [CI], 43 to 100), and the estimated 1-year disease-free survival was 54% (95% CI, 29 to 100). CONCLUSIONS: Our findings suggest that sequential CD7 CAR T-cell therapy and haploidentical HSCT is safe and effective, with remission and serious but reversible adverse events. This strategy offers a feasible approach for patients with CD7-positive tumors who are ineligible for conventional allogeneic HSCT. (Funded by the National Natural Science Foundation of China and the Key Project of Science and Technology Department of Zhejiang Province; ClinicalTrials.gov numbers, NCT04599556 and NCT04538599.).


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Leukemia , Lymphoma , Receptors, Chimeric Antigen , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Antigens, CD7 , Combined Modality Therapy , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Leukemia/therapy , Leukemia/mortality , Lymphoma/mortality , Lymphoma/therapy , Receptors, Chimeric Antigen/therapeutic use , Remission Induction , Transplantation, Homologous , Recurrence , Aged
3.
Cell Rep Med ; 5(2): 101400, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38307031

ABSTRACT

Chimeric antigen receptor (CAR)-T therapy has shown superior efficacy against hematopoietic malignancies. However, many patients failed to achieve sustainable tumor control partially due to CAR-T cell exhaustion and limited persistence. In this study, by performing single-cell multi-omics data analysis on patient-derived CAR-T cells, we identify CD38 as a potential hallmark of exhausted CAR-T cells, which is positively correlated with exhaustion-related transcription factors and further confirmed with in vitro exhaustion models. Moreover, inhibiting CD38 activity reverses tonic signaling- or tumor antigen-induced exhaustion independent of single-chain variable fragment design or costimulatory domain, resulting in improved CAR-T cell cytotoxicity and antitumor response. Mechanistically, CD38 inhibition synergizes the downregulation of CD38-cADPR -Ca2+ signaling and activation of the CD38-NAD+-SIRT1 axis to suppress glycolysis. Collectively, our findings shed light on the role of CD38 in CAR-T cell exhaustion and suggest potential clinical applications of CD38 inhibition in enhancing the efficacy and persistence of CAR-T cell therapy.


Subject(s)
Neoplasms , Single-Chain Antibodies , Humans , T-Lymphocytes , Immunotherapy, Adoptive/methods , Antigens, Neoplasm/metabolism
4.
Front Immunol ; 14: 1125357, 2023.
Article in English | MEDLINE | ID: mdl-37215107

ABSTRACT

Background aims: B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor-T cell (CAR-T) therapy is used for refractory or relapsed multiple myeloma (r/r MM). However, CAR-T-related tumor lysis syndrome (TLS) has been observed. We aimed to elucidate the incidence, clinical and laboratory characteristics, and prognosis of CAR-T cell-related TLS. Methods: Patients (n=105) with r/r MM treated with BCMA-targeted CAR-T cell therapy were included. Patient characteristics, laboratory parameters, and clinical outcomes were assessed. Results: Eighteen (17.1%) patients developed TLS after BCMA-targeted CAR-T cell therapy. The median time till TLS onset was 8 days. Patients with TLS had steep rise in uric acid (UA), creatinine, and lactate dehydrogenase (LDH) within 6 days following CAR-T cell infusion and presented earlier and persistent escalation of cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-γ [IFN-γ], and ferritin levels). All 18 patients had cytokine release syndrome (CRS), of which 13 (72.2%) developed grade 3-4 CRS. Three of 18 patients (16.7%) developed immune effector cell-associated neurotoxicity syndrome (ICANS): two patients with grade 1 ICANS and one with grade 2 ICANS. TLS development had a negative effect on the objective response rate (77.8% in the TLS group vs. 95.4% in the non-TLS group, p<0.01). During the median follow-up of 15.1 months, the median PFS was poorer of patients with TLS (median: 3.4 months in the TLS group vs. 14.7 months in the non-TLS group, p<0.001, hazard ratio [HR]=3.5 [95% confidence interval [CI] 1.5-8.5]). Also, TLS development exhibited significant effects on OS (median: 5.0 months in the TLS group vs. 39.8 months in the non-TLS group, p<0.001, hazard ratio [HR]=3.7 [95% CI 1.3-10.3]). TLS was associated with a higher tumor burden, elevated baseline creatinine and UA levels, severe CRS, pronounced CAR-T cell expansion, and corticosteroid use. Conclusion: TLS is a frequently observed CAR-T therapy complication and negatively influences clinical response and prognosis. Close monitoring for TLS should be implemented during CAR-T cell therapy, especially for those at high TLS risk.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Tumor Lysis Syndrome , Humans , Multiple Myeloma/drug therapy , B-Cell Maturation Antigen , Tumor Lysis Syndrome/etiology , Tumor Lysis Syndrome/therapy , Incidence , Creatinine , Prognosis , Cell- and Tissue-Based Therapy
5.
Hematol Oncol ; 41(2): 239-247, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34564882

ABSTRACT

Secondary central nervous system (SCNS) involvement is an infrequent but universally fatal event in diffused large B-cell lymphoma. The occurrence rate of SCNS involvement is approximately 5% but comes with a poor prognosis ever after. However, existing risk models to predict the incidence and prognosis of these patients with SCNS involvement lack both efficiency and accuracy. Controversy has also been reported regarding which risk factor may best identify the population with a high CNS relapse rate. In this study, we retrospectively analyzed 831 patients with diffused large B-cell lymphoma, diagnosed between March 2008 and June 2018 in Tianjin Medical University Cancer Institute and Hospital, Beijing Cancer Hospital, and Cancer Hospital of The University of Chinese Academy of Science. Risk factors and nomogram were identified and established based on Fine and Gray's competing risk analysis. Among these patients, 55 (6.6%) of them eventually developed SCNS involvement. The 1- and 2-year incidence for SCNS involvement were 3.9% and 4.7%, respectively. The median time from de novo diagnosis to CNS relapse was 8 months, and the median overall survival of these patients was 28 months. Considering the competing mortality before SCNS involvement, Fine and Gray's competing risk model was performed to analyze the characteristics related to SCNS involvement, and identified risk factors as the multiple extranodal involvements, elevated LDH and AMC level, and the involvement of breast, adrenal gland/kidney, pulmonary and bone. Corresponding factors were integrated into the competing nomogram for SCNS involvement (c-index = 0.778). In conclusion, we present the first predictive nomogram to evaluate the risk to develop SCNS involvement in de novo DLBCL patients, which may help in both prognostic evaluation and clinical decision for this subgroup.


Subject(s)
Central Nervous System Neoplasms , Lymphoma, Large B-Cell, Diffuse , Humans , Rituximab/therapeutic use , Retrospective Studies , Neoplasm Recurrence, Local/pathology , Central Nervous System Neoplasms/drug therapy , Prognosis , Lymphoma, Large B-Cell, Diffuse/drug therapy , Central Nervous System/pathology , Antineoplastic Combined Chemotherapy Protocols
6.
Cancer Control ; 29: 10732748221122703, 2022.
Article in English | MEDLINE | ID: mdl-37735939

ABSTRACT

BACKGROUND: The NCCN clinical guidelines recommended core needle biopsy for breast lesions classified as Breast Imaging Reporting and Data System (BI-RADS) 4, while category 4A lesions are only 2-10% likely to be malignant. Thus, a large number of biopsies of BI-RADS 4A lesions were ultimately determined to be benign, and those unnecessary biopsies may incur additional costs and pains. However, it is important to emphasize that the current risk prediction model focuses primarily on the details and complex risk features of US or MG findings, which may be difficult to apply in order to benefit from the model. To stratify and manage BI-RADS 4A lesions effectively and efficiently, a more effective and practical predictive model must be developed. METHODS: We retrospectively analyzed 465 patients with BI-RADS ultrasonography (US) category 4A lesions, diagnosed between January 2019 and July 2019 in Tianjin Medical University Cancer Institute and Hospital and National Clinical Research Center for Cancer. Univariate and multivariate logistic regression analyses were conducted to identify risk factors. To stratify and predict the malignancy of BI-RADS 4A lesions, a nomogram combining the risk factors was constructed based on the multivariate logistic regression results. In order to determine the predictive performance of our predictive model, we used the concordance index (C-index), calibration curve, and receiver operating characteristic (ROC), and the decision curve analysis (DCA) to assess the clinical benefits. RESULTS: Based on our analysis, 16.3% (76 out of 465) of patients were pathologically diagnosed with malignant lesions, while 83.6% (389 out of 465) were diagnosed with benign lesions. According to univariate and multivariate logistic regression analysis, age (OR = 3.414, 95%CI:1.849-6.303), nipple discharge (OR = .326, 95%CI:0.157-.835), palpable lesions (OR = 1.907, 95%CI:1.004-3.621), uncircumscribed margin (US) (OR = 1.732, 95%CI:1.033-2.905), calcification (mammography, MG) (OR = 2.384, 95%CI:1.366-4.161), BI-RADS(MG) (OR = 5.345, 95%CI:2.934-9.736) were incorporated into the predictive nomogram (C-index = .773). There was good agreement between the predicted risk and the observed probability of recurrence. Furthermore, we determined that 153 was the best cutoff score for distinguishing between patients in the low- and high-risk groups. Malignant lesions were significantly more prevalent in high-risk patients than in low-risk patients. CONCLUSION: Based on clinical, US, and MG features, we present a predictive nomogram to reliably predict the malignancy risk of BI-RADS(US) 4A lesions, which may assist clinicians in the selection of patients at low risk of malignancy and reduce the number of false-positive biopsies.

SELECTION OF CITATIONS
SEARCH DETAIL
...