Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 618(7967): 959-966, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37380692

ABSTRACT

Electrochemical carbon-capture technologies, with renewable electricity as the energy input, are promising for carbon management but still suffer from low capture rates, oxygen sensitivity or system complexity1-6. Here we demonstrate a continuous electrochemical carbon-capture design by coupling oxygen/water (O2/H2O) redox couple with a modular solid-electrolyte reactor7. By performing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) redox electrolysis, our device can efficiently absorb dilute carbon dioxide (CO2) molecules at the high-alkaline cathode-membrane interface to form carbonate ions, followed by a neutralization process through the proton flux from the anode to continuously output a high-purity (>99%) CO2 stream from the middle solid-electrolyte layer. No chemical inputs were needed nor side products generated during the whole carbon absorption/release process. High carbon-capture rates (440 mA cm-2, 0.137 mmolCO2 min-1 cm-2 or 86.7 kgCO2 day-1 m-2), high Faradaic efficiencies (>90% based on carbonate), high carbon-removal efficiency (>98%) in simulated flue gas and low energy consumption (starting from about 150 kJ per molCO2) were demonstrated in our carbon-capture solid-electrolyte reactor, suggesting promising practical applications.

2.
Small ; 19(39): e2302650, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37264736

ABSTRACT

Metallic zinc (Zn) is a highly promising anode material for aqueous energy storage systems due to its low redox potential, high theoretical capacity, and low cost. However, rampant dendrites/by-products and torpid Zn2+ transfer kinetics at electrode/electrolyte interface severely threaten the cycling stability, which deteriorate the electrochemical performance of Zn-ion batteries. Herein, an interfacial engineering strategy to construct alkaline earth fluoride modified metal Zn electrodes with long lifespan and high capacity retention is reported. The compact fluoride layer is revealed to guide uniform Zn stripping/plating and accelerate the transfer/diffusion of Zn2+ via Maxwell-Wagner polarization. A series of in situ and ex situ spectroscopic studies verified that the fluoride layer can guide uniform Zn stripping/plating. Electrochemical kinetics analyses reveal that positive effect on the removal of Zn2+ solvation sheath provided by fluoride layer. Meanwhile, this fluoride coating layer can act as a barrier between the Zn electrode and electrolyte, providing a high electrode overpotential toward hydrogen evolution reaction to hold back H2 evolution. Consequently, the fluoride-modified Zn anode exhibited a capacity retention of 88.2% after 4000 cycles under10 A g-1 . This work opens up a new path to interface engineering for propelling the exploration of advanced rechargeable aqueous Zn-ion batteries.

3.
Sci China Life Sci ; 65(7): 1445-1455, 2022 07.
Article in English | MEDLINE | ID: mdl-34939159

ABSTRACT

Synthetic genomics has provided new bottom-up platforms for the functional study of viral and microbial genomes. The construction of the large, gigabase (Gb)-sized genomes of higher organisms will deepen our understanding of genetic blueprints significantly. But for the synthesis and assembly of such large-scale genomes, the development of new or expanded methods is required. In this study, we develop an efficient pipeline for the construction of large DNA fragments sized 100 kilobases (kb) or above from scratches and describe an efficient method for "scar-free" engineering of the assembled sequences. Our method, therefore, should provide a standard framework for producing long DNA molecules, which are critical materials for synthetic genomics and metabolic engineering.


Subject(s)
DNA , Metabolic Engineering , DNA/genetics , DNA/metabolism , Genome , Genomics/methods
4.
Nanomaterials (Basel) ; 8(6)2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921750

ABSTRACT

Slow and controlled release systems for drugs have attracted increasing interest recently. A highly efficient metal-organic gel (MOGs) drug delivery carrier, i.e., MIL-100(Al) gel, has been fabricated by a facile, low cost, and environmentally friendly one-pot process. The unique structure of MIL-100(Al) gels has led to a high loading efficiency (620 mg/g) towards doxorubicin hydrochloride (DOX) as a kind of anticancer drug. DOX-loaded MOGs exhibited high stability under physiological conditions and sustained release capacity of DOX for up to three days (under acidic environments). They further showed sustained drug release behavior and excellent antitumor effects in in vitro experiments on HeLa cells, in contrast with the extremely low biotoxicity of MOGs. Our work provides a promising way for anticancer therapy by utilizing this MOGs-based drug delivery system as an efficient and safe vehicle.

SELECTION OF CITATIONS
SEARCH DETAIL
...