Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Soft Matter ; 20(13): 2937-2954, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38466149

ABSTRACT

A novel composite hydrogel with exceptional adsorption and photocatalytic properties was synthesized using modified coal-based humic acid (HA-C), modified titanium dioxide (TiO2) nanoparticles, acrylic acid (AA), and acrylamide (AM) as precursors. The modification of HA-C and TiO2 significantly enhances the structural support provided by the hydrogel for photocatalytic components. Moreover, we investigated the effects of monomer ratio, dye concentration, temperature, and pH on the material properties. Additionally, we tested the mechanical strength, swelling behavior, and reusability of the hydrogels. The composite hydrogel's adsorption performance and synergistic adsorption-photocatalytic performance were evaluated based on its removal rate for both absorbed and degraded methylene blue (MB). Remarkably, incorporating HA-C greatly improved the adsorption efficiency of the composite hydrogel for methylene blue to a maximum capacity of 1490 mg g-1. Furthermore, TiO2 nanoparticles in the structure promoted MB degradation with an efficiency exceeding 96.5%. The hydrogel exhibited excellent recoverability and reusability through nine cycles of adsorption/desorption as well as six cycles of degradation.

2.
Polymers (Basel) ; 15(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37896418

ABSTRACT

The application of photocatalysis technology in environmental pollution treatment has garnered increasing attention, and enhancing the photocatalytic efficiency and recyclability of photocatalysts represents a pivotal research focus for future endeavors. In this paper, polypyrrole titanium dioxide nanocomposite (PPy-TiO2) was prepared using in situ polymerization method and dispersed in sodium alginate/polyacrylamide (SA/PAM) hydrogel matrix to prepare SA/PAM/PPy-TiO2 nanocomposite hydrogels. The nanocomposite hydrogels were characterized by XPS, FT-IR, XRD, TGA, SEM, and TEM. The results showed that the composite materials were successfully prepared and PPy-TiO2 was uniformly dispersed in the hydrogel matrix. The incorporation of PPy in the SA/PAM/TiO2 composite hydrogel resulted in enhanced visible light absorption, reduced recombination efficiency of photoelectron-hole pairs in TiO2, and facilitated the photocatalytic degradation of methylene blue (MB) and methyl orange (MO) under sunlight irradiation. The photocatalytic efficiency of the composite hydrogel for MB was nearly 100%, whereas for MO, it reached 91.85% after exposure to sunlight for 120 min. In comparison with nano-TiO2 and PPy-TiO2, the SA/PAM/PPy-TiO2 nanocomposite hydrogel exhibited a higher degradation rate of MB and demonstrated ease in separation and recovery from the reaction solution. Furthermore, even after undergoing five cycles of recycling, there was no significant decrease observed in photodegradation efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL